18 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Методы сварки и сварочного оборудования

Содержание

Контактная стыковая сварка: метод оплавлением и метод сопротивлением. Технология методов

В ряде случаев, например, при механизации больших объемов типовых сварочных процессов, связанных с соединением однотипных заготовок встык, применение классических методов сварки затруднено или нецелесообразно. Тогда оптимальным решением становится стыковая контактная сварка, обеспечивающая надежное соединение заготовок по всей плоскости их соприкосновения. Чаще всего данный метод используется для торцевых соединений.

Суть контактной стыковой сварки

К заготовкам, подготовленным к сварке, прикладываются осевые сжимающие силы. В совокупности с локальным нагревом они обеспечивают взаимное проникновение заготовок. При этом часть металла выдавливается наружу, образуя грат, который затем удаляется механически.

Сфера применения

Стыковая технология используется в промышленных, а иногда и в бытовых условиях для сварки однородных заготовок встык. Чаще всего торцами сваривают такие материалы и изделия:

На деле круг задач, решаемых контактной стыковой сваркой, гораздо шире и ограничен лишь возможностями используемого оборудования. Чаще всего оно специализированное, универсальные аппараты мало распространены.

Преимущества и недостатки стыковой сварки

Забегая вперед, отметим, что данная технология практически лишена серьезных недостатков. К ним можно отнести сложность и дороговизну оборудования, а также большие потери металла на вытеснение и/или разбрызгивание. Последний фактор особенно важен, так как неизбежно сказывается на суммарной длине свариваемой конструкции.

Преимуществ у стыковой сварки больше. К ним относятся:

  • высокая производительность;
  • высокая скорость соединения (обычно в пределах 2-40 секунд);
  • низкий расход электроэнергии при высоком КПД;
  • простота подготовительных операций или полное их отсутствие;
  • возможность соединения разнородных материалов;
  • простота управления, благодаря автоматизации оборудования.

При соединении металлов, склонных к окислению, проявляется еще одно достоинство стыковой сварки – в большинстве случаев остатки разрушенной оксидной пленки не остаются в стыке, а вытесняются наружу вместе с гратом.

Разновидности контактной стыковой сварки

Общее понятие стыковой сварки объединяет две различные технологии, которые отличаются соотношением ролей давления и температуры в формировании соединения. Они называются методами сопротивления и оплавления.

Сварка сопротивлением

При сварке сопротивлением кране важным фактором является точность подгонки кромок. Даже незначительные зазоры существенно снижают качество шва. После того как обработанные заготовки закрепляются в аппарате и соединяются с контактами трансформатора, они сжимаются друг с другом, после чего включается сварочный ток. Происходит локальный нагрев стыка, который продолжается до тех пор, пока металл не приобретет пластичность. Как только это произойдет, ток отключается, а давление нарастает. В результате происходит осадка заготовок, то есть сжатие с формированием общих кристаллических решеток.

Данный метод чаще всего применяется для сваривания относительно тонких деталей (площадь соединения до 200 кв. мм) из низкоуглеродистой стали, например, проволоки, стержней, труб. Кроме того, сваркой сопротивлением соединяют медь, латунь, бронзу, приваривают изделия из этих металлов к стальным заготовкам.

Сварка оплавлением

В отличие от сварки сопротивлением метод оплавления предполагает сближение заготовок, на которые уже подается сварочный ток. Соприкосновение поверхностей ввиду естественной шероховатости материала происходит не одновременно по всей поверхности, а в ряде хаотично расположенных точек. Это приводит к большой плотности тока и, следовательно, мгновенному оплавлению металла в зонах стыка с его последующим взрывообразным вытеснением наружу вместе с окислами и загрязнениями. Нарастание давления приводит к появлению новых точек стыка, в которых происходит то же самое. Когда стыкуемые поверхности полностью оплавятся, происходит их осадка с формированием грата.

Именно сварка оплавлением получила наибольшую популярность, так как гарантирует стабильно высокое качество стыка в отличие от технологии сварки сопротивлением, при которой качество может значительно разниться от образца к образцу. Метод оплавления не требует тщательной подгонки поверхностей, практически не ограничен в материалах заготовок и площади сечения стыка (условно указывается граничное значение в 100 000 кв. мм, то есть 0,1 кв. м).

Допуски при стыковке тоже достаточно велики – допустимо отклонение на 8-15% в зависимости от типа заготовок. Основная сфера применения – сварка крупных ответственных конструкций, например, магистральных трубопроводов или железнодорожных рельсов.

Технология стыковой сварки

Вне зависимости от разновидности контактной стыковой сварки для ее осуществления используются особые аппараты, а алгоритм действий строится по одному и тому же принципу.

Необходимое оборудование

Роль основного производственного оборудования играет аппарат стыковой сварки. Он состоит из двух модулей: стыковочной машины и сварочного трансформатора. Стыковочная машина служит для создания необходимого осевого давления в зоне сварки и включает в себя:

  • станину, то есть корпусы с опорной поверхностью;
  • плиты и направляющие – обеспечивают соосность заготовок;
  • фиксаторы – перемещаются по направляющим, удерживая заготовки;
  • механизм привода – служит для создания необходимого давления и передачи его фиксаторам.

Механизм привода, в свою очередь, состоит из блока электродвигателя с редуктором и насосом, а также пневмо- или гидроблока, непосредственно воздействующего на рабочие органы устройства.

Сварочный трансформатор служит для подачи тока на заготовки через специальные зажимы, которые должны обеспечивать минимальное сопротивление и плотно прилегать к свариваемому металлу. В противном случае, велик риск возникновения нежелательных процессов подгорания и плавления в местах контакта.

Подготовка поверхностей к сварке

Свариваемые поверхности очищают от загрязнений и оксидных пленок, шлифуют и обезжиривают. В случае сварки оплавлением этого достаточно.

Если выбран метод сварки сопротивлением, потребуются дополнительные шлифовально-полировальные операции, направленные на минимизацию шероховатостей, устранение поверхностных дефектов и сведение к минимуму любых возможных зазоров.

Кромкование деталей не выполняется, так как в условиях перемещения избытка металла не внутрь, а наружу стыка оно не имеет смысла. Присадочные материалы также не используются.

Процесс сварки

Стыковая сварка заготовок проводится механизированным или автоматизированным методом. Ниже приводится последовательность действий для механизированной сварки, автоматизированная отличается от нее лишь компьютеризацией управления:

  1. Подготовленные к сварке изделия закрепляются в фиксирующих устройствах на станине сварочного аппарата.
  2. К заготовкам подключаются зажимы сварочного трансформатора, на его первичную обмотку подается электрический ток.
  3. В заданной последовательности проводятся нагрев и сжимание стыка. Величина сварочного тока, сила давления и время воздействия определяются из расчетных параметров.
  4. После кристаллизации стыка отсоединяются зажимы трансформатора, раскрываются фиксаторы. Деталь снимается с устройства.
  5. Образовавшийся на поверхности стыка грат механически удаляется.

Простота и эффективность данного алгоритма обеспечивают высокую производительность работ при надлежащем качестве стыка.

Современные и классические сварочные технологии

Сварка — одно из важнейших ремесел для человека. С помощью сварочных технологий нам удается создавать по-настоящему удивительные вещи: от простейших бытовых приборов до космических ракет. В этой статье мы расскажем, как происходит сварка, какие существуют виды сварки и их краткая характеристика.

Читать еще:  Цокольный сайдинг на фундамент своими руками

Общая информация

Что такое сварка? Каковы основы сварки? Эти вопросы задаю многие начинающие умельцы. По сути своей, сварка — это процесс соединения разных металлов. Соединение (его также называют швом) формируется на межатомном уровне с помощью нагрева или механической деформации.

Теория сварки металлов очень обширна и невозможно в рамках одной статьи описать все нюансы. Также как невозможно описать все способы сварки металлов, поскольку на данный момент способов около сотни. Но мы постараемся кратко классифицировать методы сварки, чтобы новички не запутались.

Итак, на данный момент возможна термическая, термомеханическая и полностью механическая сварка деталей из металла или других материалов (например, пластика или стекла). При выборе способа сварки учитывается каждый нюанс: толщина деталей, их состав, условия работы и прочее. От этого зависит технология сварки металла.

Термическая сварка — это процесс соединения деталей только с помощью высоких температур. Металл плавится, образуется надежное сварное соединение. К термическим методам относится, например, дуговая и газовая сварка (о них мы поговорим позже).

Термомеханическая сварка — это процесс соединения деталей с помощью высоких температур и механического воздействия, например, давления. К такому типу принадлежит контактная сварка. Деталь нагревается не так сильно, как в случае обычной термической сварки, а для формирования шва используется механическая нагрузка, а не плавление металла как такового.

Механическая сварка — процесс соединения деталей без применения высоких температур и вообще тепловой энергии. Здесь ключевой элемент — механическое воздействие. К такому типу относится холодная сварка, ультразвуковая сварка или соединение деталей трением.

Также существует классификация способов сварки по техническим признакам. Используя такую классификацию можно довольно кратко описать все имеющиеся типы сварки. Они делятся на:

  • Сварку в защитной среде (для защиты может использоваться флюс, инертный газ, активный газ, вакуум, защита может быть комбинированной и состоять из нескольких материалов сразу).
  • Сварку прерывистую и непрерывную.
  • Сварку ручную, механизированную, полуавтоматическую, автоматическую, роботизированную.

Если вы ранее не сталкивались со сваркой и все перечисленное выше кажется чем-то запутанным и непонятным, то не беспокойтесь. Далее мы расскажем, какие самые популярные методы сварки используются в домашних и промышленных условиях.

Вам будем дана характеристика основных видов сварки и некоторые особенности, которые нужно учесть. Кстати, многим видам сварки мы посвящали отдельные статьи, которые вы можете прочесть, открыв рубрику «Виды и способы сварки» на нашем сайте.

Ручная дуговая сварка с применением неплавящихся электродов

Способ ручной дуговой сварки разных металлов с применением неплавящихся электродов — один из самых популярных методов как среди домашних умельцев, так и среди профессионалов своего дела. Ручная дуговая сварка — это вообще один из древнейших способов сварки. Благодаря большому выбору сварочных аппаратов для дуговой сварки такой метод стал доступен широкому кругу сварщиков.

Электрод — это стержень, выполняющий роль проводника тока. Он может быть изготовлен из различных материалов и иметь специальное покрытие.

Технология дуговой сварки неплавящимся электродом крайне проста: детали подгоняют друг к другу, затем электродом постукивают или чиркают о поверхность металла, зажигая сварочную дугу. В качестве основного оборудования используют сварочные инверторы.

Для сварки инвертором выбирают неплавящиеся электроды, сделанные из угля, вольфрама или графита. Во время сварки электрод нагревается до высокой температуры, плавя металл и образуя сварочную ванну, в которой как раз и формируется шов. Такой метод используют для сварки цветных металлов.

Ручная дуговая сварка с применением плавящихся электродов

Виды сварки плавлением металла не заканчиваются на применении неплавящихся стержней. Для работы также можно использовать плавящиеся электроды. Технология сварки металла с использованием плавящихся стержней такая же, что и при работе с неплавящимися материалами.

Отличие лишь в составе самого электрода: плавящиеся стержни обычно изготавливаются из легкоплавких металлов. Такие стержни также пригодны для сварки инвертором в домашних условиях. Здесь шов образуется не только за счет расплавленного металла детали, но и за счет расплавленного электрода.

Дуговая сварка с использованием защитного газа

Способ дуговой сварки разных металлов с использованием защитного газа выполняется с помощью плавящихся и неплавящихся электродов. Технология сварки такая же, как и при классической ручной дуговой сварке. Но здесь для дополнительной защиты сварочной ванны в зону сварки подается специальный защитный газ, поставляемый в баллонах.

Дело в том, что сварочная ванна легко подвержена негативному влиянию кислорода и под его воздействием шов может окислиться и получиться некачественным. Газ как раз и помогает избежать этих проблем. При его подаче в сварочную зону образуется плотное газовое облако, не дающее кислороду проникнуть в сварочную ванну.

Автоматическая и полуавтоматическая сварка с использованием флюса или газа

Автоматическая и полуавтоматическая сварка с применением флюса или газа — это уже более продвинутый способ соединения металлов. Здесь часть работ механизирована, например, подача электрода в сварочную зону. Это значит, что сварщик подает стержень не с помощью рук, а с помощью специального механизма.

Автоматическая сварка подразумевает механизированную подачу и дальнейшее движение электрода, а полуавтоматическая подразумевает только механизированную подачу. Дальнейшее движение электрода сварщик осуществляет вручную.

Здесь защита сварочной ванны от кислорода просто обязательна, поэтому используется газ (по аналогии с дуговой сваркой с применением газов) или специальный флюс. Флюс может быть жидким, пастообразным или кристаллическим. С помощью флюса можно значительно улучшить качество шва.

Прочие методы соединения металлов

Помимо традиционных способов сварки в современной промышленности применяются методы, позволяющие соединить уникальные металлы. Зачастую такие металлы обладают ярко выраженными химическими или тугоплавкими свойствами, отчего привычные способы сварки не подходят для их соединения. Конечно, такие металлы не используются в домашней сварке, но они широко применяются для создания ответственных деталей на крупном производстве.

Мы расскажем про виды сварки плавлением, когда суть сварки заключается в подаче большого количества тепла на маленький участок сварки. К таким методам относится лазерная сварка и плазменная сварка.

Лазерная сварка металлов выполняется с помощью автоматического и полуавтоматического оборудования. Такой процесс сварки может быть полностью роботизирован и не требует присутствия человека. Здесь деталь нагревается, а затем и плавится под воздействием тепла, исходящего от лазерного луча и направленного в определенную точку.

Тепло концентрируется строго в одной точке, позволяя сваривать очень мелкие детали размером менее одного миллиметра. Также с помощью призмы лазер можно расщепить и направиться в разные стороны, чтобы сварить несколько деталей сразу.

Плазменная сварка металлов выполняется с применением ионизированного газа, называемого плазмой. Газ струёй подается в сварочную зону, образовывая плазму. Она работает в связке с вольфрамовым электродом и газ нагревается за счет электрической дуги.

Сам ионизированный газ обладает свойством проводника тока, поэтому в случае плазменной сварки именно плазма является ключевым элементом в рабочем процессе. Также плазма активно защищает сварочную ванну от негативного влияния кислорода. Такой метод сварки используется при работе с металлами, толщиной до 9 миллиметров.

Технологический процесс сварки

Мало знать способы сварки, нужно еще понимать, какие необходимы документы на сварку и из каких этапов состоит сварочный процесс. Конечно, это справедливо только в отношении профессиональных сварщиков, выполняющих работу в цеху или на производстве. Вам это не нужно, если вы собираетесь варить забор на даче, но дополнительные знания тоже не помешают.

Читать еще:  Как сделать лестницу своими руками для работы

Итак, вот наше краткое описание технологического процесса сварки:

  1. Разработка чертежа
  2. Составление технологической карты
  3. Подготовка рабочего места сварщика и подготовка металла
  4. Непосредственно сварка
  5. Очистка металла
  6. Контроль качества

Сам по себе техпроцесс — это полное описание этапов сварки. Технический процесс разрабатывается после того, как будут готовы чертежи будущей металлоконструкции. Чертеж делают, опираясь на правила (ГОСТы, например), при этом во главу ставят качество будущей конструкции и разумную экономию.

Технологический процесс сварки оформляется на специально разработанных для этого бланках. Стандартный бланк для описания техпроцесса называется «технологическая карта». В технологической карте и описываются все этапы производства. Если производство серийное или крупномасштабное, то изложение может быть довольно подробным, с описанием каждого нюанса.

В технологическую карту заносят тип металла, из которого изготовлены детали, способы сварки металлов, используемые для соединения этих деталей, применяемое для этих целей сварочное или иное оборудование, типы присадочных материалов, электродов, газов или флюсов, используемых в работе. Также указывается последовательность формирования швов, их размеры и прочие характеристики.

Также в технологической карте указывают марку электродов, их диаметр, скорость их подачи, скорость сварки, количество слоев у шва, рекомендуемые настройки сварочного аппарата (параметр полярности и величины сварочного тока), указывают марку флюса. Перед самой сваркой детали тщательно подготавливают, очищая их от коррозии, загрязнений и масла. Поверхность металла обезжиривают с помощью растворителя. Если у детали есть значительные видимые дефекты (например, трещины), то она не допускается к сварке.

После сварки предстоит контроль сварочных швов. Этой теме мы посвятили отдельную статью, но здесь кратко расскажем об основных методах контроля. Прежде всего, применяется визуальный контроль, когда сварщик может сам определить наличие дефектов у сварочного соединения. Специалистами проводится дополнительный контроль с помощью специальных приборов (это может быть магнитный контроль, радиационный или ультразвуковой).

Конечно, не все дефекты считаются плохими. Для каждых сварочных работ составляется перечень с дефектами, которые допустимы и не сильно повлияют на качество готового изделия. Контролером может быть сварщик или отдельный специалист. Его имя обязательно указывается в документах, он является ответственным лицом на этапе контроля.

Вместо заключения

В этой статье мы рассказали самое основное. Конечно, мы не сможем перечислить и описать все виды сварочных работ в рамках одной этой статьи, но на нашем сайте вы можете найти материалы, где мы рассказываем все о сварке и объясняем основы сварки различных металлов.

Для любого мастера теория сварочных процессов имеет большое значения, но без практики она не работает. Так что не теряйте время и вслед за чтением статей применяйте знания на практике. Желаем удачи в работе!

Методы сварки и сварочного оборудования

Может производиться двумя способами:неплавящимся электродом и плавящимся электродом.
При ручной дуговой сварке неплавящимся электродом свариваемые кромки изделия приводят в соприкосновение. Между неплавящимся (угольным или графитовым) электродом и изделием возбуждают дугу. Кромки изделия и вводимый в зону дуги присадочный материал нагреваются до плавления, образуется ванночка расплавленного металла. После затвердевания металл в ванночке образует сварной шов. Этот способ используется при сварке цветных металлов и их сплавов, а также при наплавке твердых сплавов.
При ручной дуговой сварке плавящимся электродом используется так называемый штучный электрод с покрытием-обмазкой. Этот способ является основным при ручной сварке. Электрическая дуга возбуждается аналогично первому способу, но расплавляет и электрод и кромки изделия. Получается общая ванна жидкого металла, которая, охлаждаясь, образует шов.


Автоматическая и полуавтоматическая сварка металла под флюсом

Автоматическая и полуавтоматическая сварка металла под флюсом выполняется путем механизации основных движений, выполняемых сварщиком при ручной сварке металла — подачи электрода в зону дуги и перемещения его вдоль свариваемых кромок изделия. При полуавтоматической сварке механизирована подача электрода в зону дуги, а перемещение электрода вдоль свариваемых кромок производит сварщик вручную. При автоматической сварке металла механизированы все операции, необходимые для этого процесса. Жидкий металл в ванночке защищают от воздействия кислорода и азота воздуха расплавленным шлаком, образованным от плавления флюса, подаваемого в зону дуги. Такая сварка металла обеспечивает высокую производительность и хорошее качество сварного шва.

Дуговая сварка металла в защитном газе

Дуговая сварка металла в защитном газе выполняется неплавящимся (вольфрамовым) или плавящимся электродом. В первом случае сварной шов формируется за счет металла расплавленных кромок изделия. При необходимости в зону дуги подается присадочный материал. Во втором случае подаваемая в зону дуги электродная проволока расплавляется и участвует в образовании шва. Защиту расплавленного шва от окисления и азотирования осуществляют струей защитного газа, оттесняющего атмосферный воздух из зоны дуги.

Электрошлаковая сварка металла

Электрошлаковая сварка металла осуществляется путем плавления металла свариваемых кромок изделия, расположенных вертикально или под углом 45 о , и электрода теплотой, выделяемой током при прохождении через расплавленный шлак. Кроме того, шлак защищает расплавленный металл от воздействия воздуха. Снизу к свариваемым изделиям приваривается вручную поддон. По обе стороны зазора между изделиями прижимаются формирующие шов медные ползуны с водяным охлаждением. Затем на поддон насыпается специальный флюс, над которым располагаются одна или две электродные проволоки. Дуга возбуждается под флюсом между электродами и поддоном. В зону горения дуги электродная проволока подаётся специальным механизмом. За счёт тепла дуги электродная проволока и флюс расплавляются, в результате образуется ванна расплавленного металла и над ней шлаковая ванна. В дальнейшем необходимое тепло образуется за счёт прохождения тока через расплавленный шлак, обладающий высоким сопротивлением (согласно закону Ленца-Джоуля). По мере накопления в ванне жидкого металла и шлака медные ползуны вместе с механизмом подачи электродной проволоки и флюса перемещаются автоматически снизу вверх со скоростью подъёма жидкого металла.

Особые виды сварки металла

В промышленности и строительстве все более широкое распространение получают тугоплавкие и химически активные металлы и сплавы. Они применяются в особо ответственных узлах. Для получения высококачественных швов в этих случаях используют источники с высокой концентрацией теплоты и осуществляют сварку в среде с очень низким содержанием кислорода, азота и водорода. Наиболее часто применяются электронно-лучевая и плазменная сварки.

Электронно-лучевая сварка металла осуществляется путем использования кинетической энергии концентрированного потока электронов, движущихся с большой скоростью в вакууме. Устройство для электронно-лучевой сварки похоже на устройство кинескопа (катод, ускоряющий электрод, магнитная линза, напряжение 30-100 кВ).

Плазменная сварка металла основана на использовании струи ионизированного газа — плазмы, содержащего электрически заряженные частицы и способного проводить ток. Энергия дуговой плазменной струи зависит от сварочного тока, напряжения, расхода газа и др. факторов. Источники питания дуги должны иметь рабочее напряжение более 120 В. Плазмообразующий газ служит также защитой расплавленного металла от окружающего воздуха.


КЛАССИФИКАЦИЯ МЕТОДОВ СВАРКИ ПЛАВЛЕНИЕМ

Существующие методы сварки плавлением могут быть классифицированы по виду источников теплоты, способы сварки — по характеру защиты ванны и свариваемого металла от взаимодействия с атмосферой воздуха, особенности введения теплоты, степени автоматизации процессов и другим признакам. По виду источника теплоты могут быть выделены методы сварки плавле­нием: дуговая электрошлаковая; электронно-лучевая; свето-лучевая; газовая; плазменная; термитная.

По характеру защиты свариваемого металла и сварочной ванны от окружающей атмосферы могут быть выделены способы сварки со шлаковой, газошлаковой и газовой защитой.

Читать еще:  Электро водяное отопление в гараже своими руками

По особенностям введения теплоты различают способы сварки с непрерывным нагревом и импульсным.

По степени автоматизации процесса существующие способы сварки могут быть разделены на ручную, механизированную и автоматическую.

Характеристика наиболее широко применяемых в промышлен­ности методов и способов сварки плавлением, учитывающая отме­ченные технологические признаки, приведена в таблице

Отличительные признаки способов сварки

Дуговая сварка

Электрошлаковая сварка

Теплота, выделяющаяся при бомбардировке поверхности на­грева заряженными частицами, и теплота плазмы столба дуги

Теплота, выделя­ющаяся при прохо­ждении тока через расплавленный шлак

Газошлаковая и газовая инертными и активными газа­ми. Местная и общая. При нормальном внешнем и повы­шенном давлениях и в вакууме

Ручная, механизированная и автоматическая

Автоматическая и механизированная

Отличительные признаки способов сварки

Лазерная сварка

Электронно-лучевая сварка

Теплота, выделяющаяся при бомбардировке поверх­ности нагрева электронами, получившими ускорение в поле высокого напряжения

Теплота, выделяющая­ся при поглощении по­верхностью нагрева ин­дуцированного излуче­ния с определенной дли­ной волны

Общая в вакууме

Газовая инертными га­зами. Местная и общая. При нормальном и повы­шенном давлениях и в вакууме

Отличительные признаки способов сварки

Газовая сварка

Плазменная сварка

Термитная сварка

Теплота, полу­ченная при сжи­гании горючего газа в кислороде

Теплота, содержащаяся в ионизированном газовом потоке

Теплота, со­держащаяся в перегретом жидком рас­плаве

Газовая и га­зошлаковая

Газовая, инерт­ными и актив­ными газами. Местная и общая

Ручная и авто­матически

СВАРИВАЕМОСТЬ И ПАЯЕМОСТЬ МЕТАЛЛОВ

Одним из важнейших свойств металлов является их способ-ность подвергаться той или иной обработке. Можно говорить о способйости металлов пластически деформироваться в холод­ном или горячем состоянии, обрабатываться резанием, изме­нять свои свойства под влиянием термической обработки и т. д.. Очевидно, можно и необходимо говорить о способности метал­лов соединяться в процессе сварки и пайки — о их свариваемо­сти и паяемости. Что следует понимать под свариваемостью и паяемостью металлов и как их оценивать?

Содержание понятия свариваемость металлов не остава­лось неизменным. Впервые оно было сформулировано в конце 20-х, в начале 30-х годов прошлого века. В соответствии с уровнем развития сварки и встречающимися затруднениями под свариваемостью понимали отношение металлов к тепло­вому воздействию. При сварке сталей с повышенным содержа­нием углерода в то время наибольшие затруднения вызывало предупреждение появления трещин в околошовных участках.
В последующие годы, с одной стороны, резко расширилась номенклатура металлов и сплавов, используемых в сварных, конструкциях, с другой, — были разработаны и применены на практике многие новые методы сварки, значительно усовершен­ствована технология сварочных процессов, достигнуты большие-успехи в разработке теоретических основ сварки. В этих усло­виях изменились и те затруднения, с которыми приходилось, иметь дело при сварке.
Очевидно, что при определении понятия свариваемости ме­таллов необходимо исходить из физической сущности сварки и отношения к ней металлов. Сварку целесообразно рассматри­вать как сочетание нескольких одновременно протекающих; процессов: взаимная кристаллизация металлов, тепловое воз­действие на металл в околошовных участках и плавление, ме­таллургическая обработка и кристаллизация металла шва. Под свариваемостью, следовательно, необходимо понимать отноше­ние металлов к этим основным процессам.
Если металлы однородны, то взаимная кристаллизация лю­бой формы между ними принципиально возможна. Однако свое­образные условия протекания сварки (высокая температура, рост дендритов от поверхностей частично оплавленных зерен, большая скорость кристаллизации, значительная степень де­формации и др.) в некоторых случаях могут вызвать пониже­ние свойств сварных соединений в области взаимной кристал­лизации.
Понижение свойств металла в области взаимной кристал­лизации возможно и при неправильном подборе присадочного-металла. Например, при сварке алюминиевых сплавов часто-используют присадочные прутки из алюминиевокремниевого-сплава с 5% Si марки АК- Однако при сварке сплавов, содер­жащих магний, магний взаимодействует с кремнием присадоч­ного металла, образуя Mg2Si, включения которого неблагопри­ятно влияют на свойства сварного соединения.
При сварке однородных металлов процесс взаимной кри­сталлизации принципиально возможен. Следует лишь оцени­вать в необходимых случаях степень возможного понижения свойств соединения в области взаимной кристаллизации.
При соединении разнородных металлов процесс взаимной кристаллизации далеко не всегда возможен. Например, эта имеет место тогда, когда металлы образуют химические соеди­нения. В этих случаях внутрикристаллическая форма связи,

между металлами возникнуть не может. Очевидно, такие ме­таллы принципиально сварены быть не могут. Это дает право ввести понятие о принципиальности свариваемости металлов. Принципиальная свариваемость есть способность пары метал­лов в условиях сварки образовать соединения на основе вза­имной кристаллизации (внутрикристаллическая форма связи).
В тех относительно редких случаях, когда разнородные ме­таллы могут быть сварены, необходимо оценивать свойства •сварных соединений в области взаимной кристаллизации — сте­пень их принципиальной свариваемости.
Поскольку существуют два различных вида процесса сварки (сварка с расплавлением металлов и сварка в пластическом со­стоянии), то принципиальную свариваемость необходимо со­ответственно подразделять для каждого из этих видов про­цесса.
Условия протекания второго и третьего процессов опреде­ляются методом сварки и его режимами. Поэтому отношение к ним металлов называется технологической свариваемостью. Технологическая свариваемость, в свою очередь, подразде­ляется на тепловую свариваемость (отношение металлов к теп­ловому воздействию) и металлургическую свариваемость (от­ношение металлов к плавлению, металлургической обработке и последующей кристаллизации).
Оценка тепловой свариваемости производится по отноше­нию к вполне определенному свариваемому металлу. Несколько сложнее с оценкой металлургической свариваемости.
Если свариваются детали из одного металла и применяется аналогичный присадочный металл (или последний отсутствует), оценка металлургической свариваемости производится для вполне определенного металла. Если же свариваются неодина­ковые металлы или присадочный металл иной, то оценку метал­лургической свариваемости необходимо производить с учетом образующихся сплавов в металле шва, что несколько услож­няет вопрос. С другой стороны, путем соответствующего под­бора присадочного металла, обеспечивающего получение оп­тимального состава металла шва, можно улучшить металлур­гическую свариваемость металлов.
Оценку технологической свариваемости необходимо произ­водить применительно к конкретному методу сварки, а иногда и к определенным технологическим режимам. Очень часто ме­талл хорошо сваривается одним методом и неудовлетворитель­но другим. Например, дуралюмин удовлетворительно свари­вается точечной сваркой и плохо — газовой.
Технологическая свариваемость не есть нечто присущее ме­таллам и сплавам. С развитием технологии сварки плохо сва­ривающиеся металлы и сплавы часто становятся хорошо сваривающимися. Правильная оценка технологической сваривае­мости требует глубокого анализа процесса сварки и хорошего изучения свойств свариваемого металла.
В настоящее время разработано много методик определе­ния тепловой свариваемости металлов. Несколько сложнее оп­ределение металлургической свариваемости. Большое число факторов, влияющих на металлургическую свариваемость, тре­бует для ее определения более сложных экспериментальных ис­следований. На практике этот вопрос решается путем проверки химического состава металла шва, его механических свойств, чувствительности к образованию трещин и газовой пори­стости и т. д.
До настоящего времени еще не сформулировано понятие о паяемости металлов — об их способности образовывать со­единения при пайке. Очевидно, решение этого вопроса должно быть аналогичным определению свариваемости металлов. Под паяемоетью металлов и сплавов необходимо понимать их отно­шение ко всей совокупности процессов, происходящих при пайке. Последние, аналогично сварке, могут быть подразде­лены, как уже указывалось выше, на три обобщенных процесса. Следовательно, паяемость и есть отношение металлов и спла­вов к этим процессам.
Однако следует отметить, что с помощью пайки могут быть соединены любые однородные и разнородные металлы. По­этому введение понятия о принципиальной паяемости метал­лов вряд ли имеет практический смысл. Правильный подбор припоез позволяет обеспечить в подавляющем большинстве случаев вполне удовлетворительные свойства соединения в об­ласти непосредственного взаимодействия припоя с паяемым ме­таллом.

Источники:

http://elsvarkin.ru/texnologiya/kontaktnaya-stykovaya-svarka/
http://svarkaed.ru/svarka/poleznaya-informatsiya/sovremennye-i-klassicheskie-svarochnye-tehnologii.html
http://www.svartex.ru/index.php/stat-i/79-osnovnye-metody-i-sposoby-svarki

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector