1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Методы получения и хранения газов используемых при газовой сварке

5.1. Газы, применяемые при сварке

При газовой сварке в качестве окислителя применяют кислород, а горючими газами служат ацетилен, водород, пропан и др.

Газообразный кислород (О2) бесцветен, не имеет запаха и вкуса, немного тяжелее воздуха. Он не относится к горючим газам, но активно поддерживает горение. Плотность кислорода при атмосферном давлении и температуре 20 °С равна 1,33 кг/м 3 .

Назначение. Служит для повышения температуры газового пламени при сгорании горючего газа.

Производство. Получают из воздуха методом глубокого охлаждения. Воздух очищают от примесей и сжимают в компрессорах, после охлаждения и расширения сжижают, а затем разделяют на кислород, азот и другие составляющие.

Газообразный технический кислород по ГОСТ 5583 — 78 выпускают трех сортов с разной степенью чистоты, %: I сорт — 99,7; II сорт — 99,5; III сорт — 99,2.

Транспортирование и хранение. Кислород для сварки поставляется и хранится в газообразном состоянии в стальных баллонах в соответствии с ГОСТ 949 — 73.

ВНИМАНИЕ! При соприкосновении кислорода с органическими соединениями (масла, жиры и другие вещества) может произойти самовоспламенение.

Кислород способен образовывать взрывоопасные смеси с горючими газами или парами жидких горючих веществ.

Газообразный ацетилен (С2Н2) — бесцветный газ, имеющий специфический чесночный запах из-за присутствия примесей: фосфористого водорода, сероводорода и др. Ацетилен легче воздуха: при атмосферном давлении и температуре 20 °С его плотность равна 1,09 кг/м 3 .

Ацетилен хорошо растворяется в жидкостях, особенно в ацетоне, становясь более безопасным.

Ацетилен, получаемый в газогенераторах при взаимодействии карбида кальция с водой, является газообразным. В баллонах он находится в растворенном (в ацетоне) состоянии и распределен в пористой массе.

Назначение. Ацетилен используется для формирования газового пламени при сгорании в струе кислорода. Преимущество ацетилена перед другими горючими газами — возможность получения высокой температуры пламени, достигающей 3200 °С.

Производство. Ацетилен получают в газогенераторах путем разложения карбида кальция водой. Применяют также ацетилен, вырабатываемый из природного газа. Такой ацетилен называют пиролизным. Он дешевле, чем ацетилен, получаемый из карбида кальция.

Транспортирование и хранение. К месту сварки ацетилен доставляют в стальных баллонах в растворенном (в ацетоне) состоянии.

ВНИМАНИЕ! Ацетилен образует с кислородом, содержащимся в воздухе, взрывоопасные смеси при нормальном атмосферном давлении. Наиболее взрывоопасны смеси, содержащие 7. 13 % ацетилена. Ацетилен может взрываться и без окислителя!

Водород (Н2) при атмосферном давлении и температуре 20 °С — горючий газ без цвета и запаха. Это один из самых легких газов. Он в 14,5 раза легче воздуха. Плотность водорода равна 0,084 кг/м 3 .

Назначение. Водород предназначен для формирования газового пламени при сгорании в струе кислорода. Температура пламени составляет 2600 °С. Водородно-кислородное пламя бесцветное, не имеет четких очертаний, что затрудняет его регулирование.

Производство. Водород получают разложением воды электрическим током, а также в газогенераторах при взаимодействии ферросилиция со щелочью.

Транспортирование и хранение. Водород хранится и поставляется в стальных баллонах в газообразном состоянии. Для сварочных работ он должен удовлетворять требованиям ГОСТ 3022-80.

ВНИМАНИЕ! Водород образует с кислородом (два объема водорода и один объем кислорода) взрывоопасную гремучую смесь.

Технический пропан — это смесь пропана (С3Н8) и пропилена (С3Н6), представляющая собой при нормальных условиях бесцветный газ, не имеющий запаха. Для безопасного пользования в состав смеси добавляют сильнопахнущие вещества — одоранты. Газ тяжелее воздуха.

При атмосферном давлении и температуре 20 °С плотность пропана составляет 1,88 кг/м 3 .

Назначение. Пропан применяют для формирования газового пламени в качестве заменителя ацетилена. Температура пламени равна 2700 “С.

Производство. Пропан получают при переработке нефтепродуктов.

Транспортирование и хранение. Пропан поставляют к месту сварки в стальных цельносварных баллонах в сжиженном состоянии. Он должен удовлетворять требованиям ГОСТ 10196 — 62.

ВНИМАНИЕ! Пропан огнеопасен. Он тяжелее воздуха и может скапливаться в приямках, подвалах и колодцах, образуя взрывоопасную смесь.

МАФ-газ — метилацетилен-алленовая газообразная фракция, образующаяся в процессе переработки природного газа и нефтепродуктов, обладающая хорошими теплофизическими свойствами. Газ тяжелее воздуха. Плотность МАФ-газа при нормальных условиях равна 1,9 кг/м 3 .

Назначение. МАФ-газ применяют в качестве заменителя ацетилена при газовой сварке. Его стоимость в два раза нйже стоимости ацетилена, а температура пламени при его сгорании достигает 2930 “С.

Производство. МАФ-газ является побочным продуктом переработки углеводородных видов сырья: природного газа и нефтепродуктов.

Транспортирование и хранение. Газ поставляют к месту сварки в цельносварных баллонах вместимостью 50 л в сжиженном состоянии.

Читать еще:  Журналы при сварке трубопровод

ВНИМАНИЕ! Смесь МАФ-газа (3,4. 10,8 % по объему) с воздухом взрывоопасна. Газ может скапливаться в подвалах, колодцах и приямках, образуя взрывоопасную смесь.

Материалы, применяемые при газовой сварке

При газовой сварке в качестве присадочного материала применяется сварочная проволока, близкая по химическому составу свариваемому металлу. Нельзя применять для сварки случайную проволоку неизвестной марки и неизвестного химического состава. Для сварки газопроводов применяются следующие марки сварочной проволоки, выпускаемые по ГОСТ 2246-70:

-св-08, св-08 А, св-08 ГА, св-08 Г2С, св-08 ГС, св-12 ГС. Цифры в обозначении марки проволок указывают на содержание углерода в сотых долях процента. Буква «А» указывает на то, что содержание серы и фосфора не более 0,03%, буква «Г» — содержание марганца в пределах 1,0%,»С» — кремния до 1,0%.

Проволока должна быть чистой, без следов окалин, ржавчины, масла, краски и прочих загрязнений. Температура плавления проволоки должна быть равна или несколько ниже температуры плавления свариваемого металла.

Проволока должна плавиться: спокойно и равномерно без сильного разбрызгивания и вскипания, образуя при застывании плотный однородный наплавленный металл без посторонних включений, пор, шлаков и прочих дефектов.

Сварочная проволока, применяемая для сварки газопроводов, должна иметь сертификат. При отсутствии сертификатов проволоку для сварки использовать нельзя.

Карбид кальция является химическим соединением кальция с углеродом и используется для получения горючего газа — ацетилена.

Получают карбид кальция в электрических печах сплавлением кокса и обожженной извести Полученный карбид кальция сливают в изложницы, где он застывает, после чего его дробят и сортируют на куски различной величины.

По внешнему виду карбид кальция представляет собой твердое тело темно-серого или коричневого цвета. Поставляется карбид кальция в герметически закрытых барабанах из кровельной стали емкостью по 50 и 100 литров.

Требованиями ГОСТ 1400-76 устанавливаются следующие размеры кусков карбида кальция: 2/3, 3/15, 15/25, 25/80 мм. Чем крупнее куски, тем больше получается ацетилена. При взаимодействии с водой карбид кальция быстро разлагается, выделяет газообразный ацетилен образует в остатке гашеную известь, являющуюся отходом. Из одного килограмма карбида кальция при разложении его можно получить от 240 до 285 дм 3 ацетилена. Практически для получения 1 м 3 ацетилена требуется 4,3 — 4,5 кг карбида кальция. Чем меньше размеры куска карбида кальция, тем быстрее происходит его разложение. Карбидная пыль при смачивании воде разлагается почти мгновенно, поэтому ее нельзя применять в обычных ацетиленовых генераторах, т.к. это может вызвать взрыв ацетилена в генераторах. Разложение карбида кальция воде сопровождается большим выделением тепла. Для охлаждения ацетилена при разложении карбида кальция берут от 5 до 20 м 3 воды на 1 кг разлагаемого карбида кальция.

Ацетилен является химическим соединением углерода с водородом, это бесцветный горючий газ, имеющий резкий характерный запах, легче воздуха, хорошо растворяется различных жидкостях, особенно в ацетоне. При сгорании в смеси с кислородом дает температуру пламени до 3150°С.

Ацетилен является взрывоопасным газом. Находясь под давлением 1,5 — 2,0 кгс/см 2 , взрывается от электрической искры или огня, а также при быстром нагреве свыше 200°С. При температуре выше 530°С происходит взрывчатое разложение ацетилена. Смесь ацетилена воздухом взрывается при атмосферном давлении, если в смеси содержится от 2,2 % до 81 % ацетилена по объему. Поэтому обращение с ацетиленом требует осторожности и строгого соблюдения правил безопасности.

Ацетилен хранится в баллонах белого цвета под давлением 1,9 МПа, имеющих пористую внутреннюю структуру, растворенным в ацетоне.

Высокая температура газового пламени достигается сжиганием горючего газа или паров жидкости в кислороде.

Кислород при атмосферном давлении и обычной температуре — газ без цвета и запаха, несколько тяжелее воздуха. Сгорание горючих газов и паров горючих жидкостей в чистом кислороде происходит очень энергично, с большой скоростью, а в зоне горения развивается высокая температура, что и лежит в основе его использования при сварке металлов.

Кислород сжижается при нормальном давлении и температуре -182,9°С. Жидкий кислород прозрачен и имеет голубоватый цвет. Масса 1 л жидкого кислорода равна 1,14 кг; при испарении 1 л кислорода образуется 860 л газа.

При соприкосновении сжатого газообразного кислорода с маслами или жирами последние могут самовоспламеняться, что может быть причиной пожара или взрыва. Поэтому при обращении с кислородными баллонами и аппаратурой необходимо тщательно следить за тем чтобы на них не попадали даже незначительные следы масла и жира. Особенно опасным является пропитывание жидким кислородом пористых веществ (угля, сажи, войлока, ваты и пр.), которые этом случае становятся сильными взрывчатыми веществами.

Для сварки и резки технический кислород выпускается трех сортов:

-1 сорта с содержанием кислорода не ниже 99,7%;

-2 сорта — не ниже 99,5%;

-3 сорта — не ниже 99,2%.

Чем чище кислород применяется при сварке, тем производительнее процесс сварки и качественнее сварное соединение.

Баллон для хранения кислорода голубого цвета, вместимость 40 дм 3 , давление до 15 МП (150кгс/см2).

Определить количество кислорода в баллоне можно умножением емкости баллона на давление газа в нем. Например: 40 х 150 = 6000 дм 3 , или 6 м 3 .

Читать еще:  Баня на крыше дома спб

Представляет собой смесь пропана с 5 — 30% бутана. Бесцветный газ, тяжелее воздуха, имеет неприятный специфический запах. Температура горения в кислороде достигает 2400°С. Используется для сварки сталей толщиной до 3 мм.

Хранится в сжиженном состоянии в баллонах красного цвета под давлением 1,6 МПа.

Рукава (шланги) служат для подвода газа к горелке или резаку. Они изготовляются из резины с одной или двумя тканевыми прослойками. Согласно ГОСТ 9356-75, выпускаются рукава трех типов: I — для ацетилена и газов-заменителей; II — для жидких горючих (из бензостойкой резины); III — для кислорода. Рукава изготовляются с внутренними диаметрами 6,3; 8; 9; 10, 12; 12,5 и 16 мм. Для горелок с низкой мощностью пламени применяются рукава с внутренним диаметром 6,3 мм.

Рукава должны иметь окраску наружного слоя: кислородные — синюю, ацетиленовые — красную, для жидкого горючего — желтую.

Для работы при низких температурах (ниже — 35° С) применяют некрашеные рукава из морозостойкой резины. Длина рукава берется не более 30 м и не менее 4,5 м; длина стыкуемых участков должна быть не менее 3 м; количество стыкуемых участков не более 3; при монтажных работах допускается длина до 40 м. Крепление рукавов на ниппелях горелок и между собой осуществляется специальными хомутами или мягкой отожженной проволокой.

Рукава выпускаются на рабочее давление: типы I и II до 0,63 МПа, тип III — до 2,0 МПа.

37.120.192.53 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Характеристика и принцип работы газовой сварки. Особенности газов. Технологии и способы сварки

Газовая сварка – вид сварки плавлением, при котором источником нагрева служит теплота, выделяемая в процессе горения смеси горючих газов.

Метод подходит для соединения почти всех металлов, используемых в технике. Применяется в промышленности, сельском хозяйстве, строительстве, при выполнении ремонтных работ.

ГОСТы

Вся информация, относящаяся к газовой сварке и применяемым материалам, изложена в ГОСТах, которые необходимо выполнять.

  1. Термины и определения: ГОСТ Р ИСО 857-1-2009 – определение термина «газовая сварка.
  2. Сварочные материалы: ГОСТ 5457-75 – технические условия на ацетилен газообразный и растворенный технический, ГОСТ 3022-80 – технический водород.
  3. Газовая сварка и резка: ГОСТ 29090-91 – требования к материалам для газовой сварки.

Принцип работы

Сварка газом принадлежит к термическому классу. Энергоноситель – газ. Процесс работы заключается в нагревании кромок соединяемых деталей до их расплавления. Источник нагрева – высокотемпературное пламя сварочной горелки, образованное в результате сжигания смеси горючего газа с кислородом. Заполнение зазора между кромками выполняется металлом расплавленной присадочной проволоки или за счет расплавления материала кромок основного материала.

Схема газовой сварки

Оборудование

Сварочный пост (рабочее место сварщика) включает:

  • кислородные баллоны (хранение запасов кислорода);
  • редукторы кислородные, служащие для понижения давления кислорода, поступающего из баллона в горелку;
  • ацетиленовые баллоны и редукторы или ацетиленовые генераторы для получения газа из карбида кальция;
  • сварочные горелки с набором наконечников;
  • шланги (резиновые рукава) для подачи газа и кислорода в горелку;
  • принадлежности (очки со светофильтрами, набор ключей, молоток, щетки стальные для очистки материала и сварного шва);
  • стол сварочный или приспособление для сборки, закрепления элементов;
  • присадочную проволоку;
  • при необходимости – сварочные порошки, флюсы.

Примерная стоимость газосварочных аппаратов на Яндекс.маркет

Характеристика и особенности газов

Для нагрева металла необходима смесь горючих газов. Газовая сварка предполагает использование ацетилена или его заменителей в смеси с техническим чистым кислородом.

Ацетилен

Нагрев и расплавление металла при газовой сварке требует высокой температуры пламени, превышающей в 2 раза этот показатель металла, который сваривается.

Ацетилен по сравнению с другими газами образует наивысшую температуру пламени – 3050-3150° С, поэтому является основным при газовой сварке.

Ацетилен – соединение углерода с водородом. Бесцветный, с резким специфическим запахом горючий газ, взрывоопасный. Работа с газом требует осторожности и соблюдения мер техники безопасности.

Транспортировка баллонов

Заменители ацетилена

Сварка металлов, имеющих температуру плавления ниже стали, может осуществляться с использованием газов–заменителей. Например: пропан, метан, водород.

Пропан – технический газ без цвета, имеет резкий запах, тяжелее воздуха. Для сварки используют пропан-бутановую смесь, содержащую 5-30% бутана. Температура пропан-кислородного пламени достигает 2400 °С.

Метан-кислородная смесь почти без запаха. Пламя имеет температуру 2100-2200 °С, поэтому такой горючий газ применяют ограниченно.

Водород – легкий горючий газ без запаха, бесцветный. В определенных пропорциях с кислородом и воздухом может образовать взрывоопасную смесь. Поэтому обязательно соблюдение правил безопасности при работе с газом. Водород для сварки находится в стальных баллонах зеленого цвета. Имеет газообразное состояние. Пламя водородно-кислородное имеет синий оттенок. Нечеткие очертания его зон затрудняют регулировку.

Виды пламени и их использование

Состав горючей смеси влияет на внешний вид и температуру сварочного пламени. Оно имеет 3 зоны: ядро, восстановительную (среднюю), факел-окислительную. Ядро включает механическую смесь нагретого до высокой температуры кислорода и разложенного ацетилена.

В зависимости от пропорции ацетилена и кислорода различают 3 вида пламени:

  • окислительное;
  • восстановительное;
  • с повышенным содержанием горючего газа.
Читать еще:  Утепление кирпичных стен изнутри своими руками с гипсокартона

Окислительное

Пламя формируется при увеличении подачи в горелку кислорода или уменьшении количества ацетилена. На 1 объемную часть ацетилена должно приходиться 1.3 и более части кислорода. Характерные черты:

  1. Укороченное заостренное ядро бледной окраски с расплывчатыми очертаниями границ.
  2. Сокращение длины средней зоны и факела.
  3. Окраска пламени – синевато-фиолетовая.
  4. Горение происходит с шумом.
  5. Температура пламени превышает норму.

Этот тип пламени применяется для соединения низкоуглеродистой стали и сварки латуни.

Восстановительное (нормальное)

Соотношение ацетилена к кислороду может находиться в пределах от 1:1 до 1:1.3. В пламени происходит образование углерода и водорода, благодаря которым металл раскисляется и восстанавливается. В таких условиях формируется однородный металлический шов без газовых пузырей и пор.

Ядро пламени – светлое, восстановительная зона и факел имеют более темный оттенок. При увеличении давления кислорода ядро удлиняется. Факел имеет температуру намного ниже восстановительной зоны. Нормальное пламя используют для сваривания большинства видов металлов.

С повышенным содержимым горючего газа

Имеет название – науглероживающее или ацетиленистое пламя. Для него характерно увеличение подачи ацетилена или уменьшение кислорода. На 1 часть ацетилена берется 0.95 и менее части кислорода. Характерные признаки:

  • увеличение размеров зоны сгорания;
  • расплывчатость очертаний ядра, возникновение на его конце зеленого венчика;
  • посветление восстановительной зоны почти до ее соединения с ядром;
  • пожелтение пламени.

Результатом избытка ацетилена является его неполное сгорание, пламя коптит из-за недостатка кислорода. Излишек ацетилена разлагается на углерод и водород. В расплавленный металл переходит углерод. Результат – науглероживается металл шва.

Пламя с небольшим избытком горючего газа используют для сварки магниевых и алюминиевых сплавов, чугуна.

Характеристика методов газовой сварки

Существует 2 способа:

  • правый;
  • левый.

Правый

Это метод, при котором сварка выполняется слева направо. Направление:

  • сварочного пламени – сваренный участок шва;
  • присадочной проволоки – вслед за горелкой.

Мундштуком горелки совершаются небольшие поперечные колебания.

По сравнению с левым способом:

  • производительность сварки на 20-25% выше;
  • качество сварного шва лучше;
  • расход газов меньше на 15-20%.

Рассеивание теплоты пламени меньше по сравнению с левым методом, в связи с чем угол раскрытия шва составляет 60-70°, что способствует уменьшению количества наплавляемого материала, расхода проволоки и снижению коробления изделия.

Способ целесообразен при соединении элементов, имеющих большую теплопроводность и деталей, толщина которых превышает 5 мм.

Левый

Способ заключается в передвижении:

  • горелки справа налево;
  • присадочной проволоки – перед пламенем, которое направлено на несваренную зону шва.

Кромки основного металла перед началом сварочных работ подогревают, что способствует хорошему перемешиванию сварочной ванны.

Левый способ применяют для соединения элементов из легкоплавких и тонких (до 3 мм) металлов.

Схема способов сварки

Характеристика технологий

Различают разные техники наложения сварочных швов:

  • многослойную;
  • валиком;
  • ванночками;
  • окислительным пламенем.

Многослойная

Применение – выполнение ответственных соединений. Сварочные работы проводятся проходкой коротких участков. Условие – несовпадение стыков швов в отдельных слоях.

Перед наложением очередного слоя поверхность предыдущего очищается от шлаков и окалины с помощью проволочной щетки.

Преимущества способа по сравнению с однослойной сваркой:

  • меньшая зона нагрева;
  • обеспечение отжига нижерасположенных слоев;
  • проковка каждого слоя.

Недостаток: большой расход газов.

Валиком

Соединяемые элементы устанавливают вертикально с зазором в полтолщины листа. Пламенем расплавляют кромки с одновременным образованием круглого отверстия. Его нижний участок на всю толщину металла заплавляют присадочным материалом. Пламя переносят выше, оплавляют кромку отверстия вверху, а на его нижнюю часть накладывают следующий слой материала. Этапы повторяют до окончания формирования сварочного шва.

Если металл имеет толщину 6-12 мм, работы одновременно проводятся с двух сторон двумя сварщиками.

Шов имеет форму сквозного валика, который соединяет детали. Металл шва – плотный, не имеет дефектов.

Ванночками

Метод применяется при сварке низколегированной и низкоуглеродистой стали до 3 мм толщиной, когда требуется получение угловых соединений и встык. Используется присадочная проволока.

В момент образования на шве ванночки диаметром 4-5 мм в нее направляют конец проволоки, расплавляют ее небольшой участок, после чего перемещают в восстановительную зону пламени. Одновременно мундштуком совершают круговое движение для перехода в рядом расположенную на шве зону новой ванночки. Она должна перекрывать на 1/3 диаметра предыдущую ванночку.

Чтобы избежать окисления, конец проволоки удерживать в восстановительной зоне. Нельзя допускать погружения ядра в ванночку с целью недопущения науглероживания металла шва.

Окислительным пламенем

Метод используется для сварки низкоуглеродистой стали. Цель – повышение производительности сварочного процесса на 10-15%.

Состав пламени β = 1.4. Избыток кислорода при сварке сталей способствует окислению металла шва, поэтому он получается хрупким и имеет поры. Поэтому при работе с целью раскисления окислов железа в сварочной ванне используют присадочные проволоки с повышенным составом кремния и марганца. Например: Св 08Г, Св 08Г2С, Св-12ГС.

Преимущества и недостатки

К положительным качествам газовой сварки относятся:

  • простота;
  • недорогое оборудование;
  • возможность регулирования скорости нагрева и охлаждения свариваемого металла;
  • прочные и плотные сварные швы.
  • снижение производительности процесса при увеличении толщины свариваемого материала;
  • обширная зона нагрева;
  • высокая стоимость горючего газа по сравнению с электроэнергией;
  • сложности механизации и автоматизации процесса.

Источники:

http://asv0825.ru/gazosvarka/17.html
http://studopedia.ru/2_28573_materiali-primenyaemie-pri-gazovoy-svarke.html
http://elsvarkin.ru/texnologiya/vidy/gazovoj-svarki/

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector