Механизированные методы сварки и наплавки
Механизированная наплавка и сварка;
При производстве труб и строительных конструкций, при ремонте изношенных шеек коленчатых валов, шпоночных канавок, шлицов и шеек валов редукторов и коробок перемены передач строительно-дорожных машин, деталей ходовой части гусеничных машин и других деталей широко применяется механизированная наплавка и сварка. Наиболее распространены следующие способы наплавки: под
слоем флюса, в средах углекислого газа, аргона и смеси
защитных газов, электрошлаковая, электроконтактная, плазменная, вибродуговая, порошковая, приварка ленты.
Наплавка под слоем флюса (рис. 2.27) хорошо защищает расплавленный металл от вредного воздействия воздуха,
по сравнению с ручной электродуговой сваркой облегчаются условия и повышается производительность труда. Кроме того, есть возможность улучшить качество наплавленного металла за счет легирования флюса.
Электрическая дуга горит под слоем гранулированного флюса в газовом пузыре, избыточное давление в котором надежно предохраняет металл от отрицательных воздействий воздуха (давление в газовом пузыре чуть выше атмосферного, за счет этого образуется свод расплавленного флюса и воздух не попадает к сварочной ванне). Кроме того, флюсовая оболочка защищает металл от разбрызгивания
и позволяет лучше использовать тепло.
Процесс наплавки под слоем флюса очень производителен по двум причинам:
1. Сварочный ток (150–200 А/мм 2 ) из-за небольшого
вылета электрода в 7–8 раз превышает значения тока при ручной электродуговой сварке.
2. Коэффициент наплавки в 1,5–2 раза выше, чем при ручной электродуговой сварке, т. к. флюс и расплавленный шлак снижают потери тепла и металла на разбрызгивание
и угар (потери не превышают 2 % от массы расплавленной проволоки).
В качестве электрода используют голую сварочную проволоку диаметром от 1 до 6 мм. Подачу проволоки (100–300 м/час) регулируют с помощью специального устройства.
По способу приготовления флюсы делятся на плавленые и неплавленые или керамические.
Плавленые флюсы получают сплавлением силикатов в печах
и размельчением, они имеют стеклообразный вид. Эти флюсы сами
не участвуют в формировании химического состава расплавленного металла, а только предохраняют его от воздуха. Наиболее распространен и дает хорошие результаты флюс АН-348А. Однако при использовании обычной сварочной проволоки типа Св-08, Св-10 получается малоуглеродистый слой наплавленного металла, имеющий низкую прочность и износостойкость. Введением в этот флюс графита (1 %) или феррохрома можно получить достаточно износостойкий слой.
Неплавленые флюсы (АНК-18, АНК-40, ЖСН-5…) аналогично
обмазке электродов представляют собой механическую смесь легирующих, газо- и шлакообразующих, связывающих и раскисляющих компонентов, влияющих на протекание металлургического процесса. Эти флюсы дают очень высокое качество наплавки, но их стоимость выше.
При наплавке под слоем флюса чаще всего используют обратную полярность: через медный мундштук плюс от источника тока подводится к проволоке, а минус через станину и токосъемник — к детали. Для увеличения производительности наплавки применяют многоэлектродную наплавку или наплавку ленточным электродом. В первом случае подаются через специальный мундштук или двумя полуавтоматами две проволоки. Ленточным электродом можно наплавлять слой металла шириной до 100 мм.
В качестве защитных газов при сварке используются аргон, углекислый газ, смеси газов и водяной пар. Из-за высокой стоимости аргона наибольшее распространение
на заводах сварных строительных и машиностроительных конструкций получила наплавка в среде углекислого газа (рис. 2.28). Восстановление деталей сваркой и наплавкой
в среде углекислого газа используется в основном для
ремонта тонкостенных деталей кабин, кузовов и оперения.
Углекислый газ, подаваемый в зону сварки, оттесняет воздух и, тем самым, защищает сварной шов от азота и кислорода. Однако углекислый газ при высокой температуре электрической дуги (до 6000° С) разлагается на окись углерода и кислород, поэтому выгорают углерод и легирующие элементы в наплавляемом металле. Негативные последствия этого устраняются применением специальной сварочной проволоки Св-08ГС, Св-10ГС и др. диаметром 0,8–1,2 мм, содержащей легирующие добавки марганца, кремния и титана.
В качестве недостатков можно назвать довольно большое разбрызгивание металла и относительно низкие механические свойства сварного шва.
Достоинствами наплавки в среде углекислого газа являются:
1) плотный, ровный и красивый сварной шов, нет шлаковой корки и не требуется последующая механическая обработка, металл шва менее чувствителен к коррозии;
2) высокая производительность труда (в 1,5–2,5 раза выше, чем при ручной электродуговой сварке);
3) хорошие условия для визуального наблюдения сварщиком за процессом сварки;
4) небольшое коробление детали из-за хорошего охлаждения ее газом и использования обратной полярности тока.
Для сварки (рис. 2.29) пользуются углекислотой, поставляемой в баллонах объемом 40 литров. Этого количества газа достаточно на 15–20 часов работы. Чтобы влага, содержащаяся в углекислоте, не вызывала разбрызгивания
металла при сварке, предусмотрен осушитель газа (медный купорос). В качестве редуктора используется обыкновенный кислородный редуктор. Сварка производится током обратной полярности. Расход углекислого газа 400–500 л/мин.
В результате сварки получается узкий и глубокий шов
и малая зона термического влияния.
В настоящее время для защиты сварочной дуги от вредного воздействия воздуха все шире начинают использовать защитные (рис. 2.30) газовые смеси, состоящие из углекислого газа СО2 и аргона Аr. Из-за снижения потерь металла до 70–80 % на разбрызгивание, по сравнению с традиционной сваркой (в защитной среде СО2), производительность этой сварки существенно (до 2 раз) возрастает, и на 10–15 % уменьшаются расходы электроэнергии и материалов. Готовые смеси поставляются (завод «Уралтехгаз», г. Екатеринбург) в 40-литровых баллонах.
Электрошлаковая наплавка (рис. 2.31) используется для ремонта деталей, имеющих большой износ (катки и гусеницы трактора и др.), дает наибольшую из всех видов сварки плавлением производительность (Kн = 25–30 г/А·ч по сравнению с 7–12 г/А·ч ручной электродуговой сварки) и позволяет получить наплавленный металл высокого качества.
Сначала флюс расплавляется электрической дугой и далее служит электрическим проводником, нагревающимся при прохождении через него электрического тока, вследствие этого расплавляется металл электрода и детали, образуется металлическая ванна. При движении кристаллизатора вверх со скоростью, соответствующей скорости расплавления электрода, которая, в свою очередь, определяется размером электрода и силой тока, происходит перемещение металлической ванны с флюсом кверху с остыванием нижних слоев металла. Флюс полностью предохраняет ванну от воздействия воздуха, позволяет вводить легирующие элементы, концентрирует тепло на расплавление металла.
Вибродуговая наплавка выполняется электродом, колеблющимся
с частотой 50–100 Гц и с амплитудой 1–3 мм. Колебания электрода оказывают существенное влияние на протекание процесса наплавки, состоящего из чередования циклов горения дуги, холостого хода
и короткого замыкания.
Важной особенностью процесса является то, что вследствие наличия индуктивности в цепи при сравнительно низком напряжении источника тока (12–20 В) дуговой разряд протекает при напряжении устойчивого горения дуги (30–35 В). В период дугового разряда выделяется 80–90 % всего тепла (при коротком замыкании всего 10–20 %).
Вибродуговую наплавку выполняют на постоянном токе обратной полярности в среде охлаждающей жидкости. Для этого используется 4–5-процентный раствор кальцинированной соды или 10-процентный раствор технического глицерина в воде. Раствор подается на расстоянии 20–40 мм от электрода. Вода переходит в пар; пары ее и продукты разложения (кислород и водород) защищают металл от азота. Подача охлаждающей воды, как и прерывистый характер процесса, способствуют уменьшению термического влияния. При разложении соды образующийся при этом кальций способствует стабилизации горения дуги, а глицерин — уменьшению трещин при наплавке высокоуглеродистой проволокой.
Несмотря на ряд преимуществ (маленькая зона термического влияния, снижение выгорания легирующих элементов, возможность получения тонких и прочных покрытий), при вибродуговой наплавке имеется существенный недостаток: снижение усталостной прочности деталей из-за неоднородности структуры и наличия пор. Поэтому этот способ в настоящее время используется редко, в частности, он не рекомендуется для наплавки деталей, работающих при знакопеременных нагрузках.
Сварка трением (рис. 2.32) используется при изготовлении деталей, имеющих форму тел вращения, и в крупносерийном ремонтном производстве. Этим способом восстанавливаются шаровые пальцы, тяги. Широко применяется сварка трением при изготовлении и ремонте режущего инструмента (сверл, метчиков, фрез, разверток). Этим способом свариваются круглые стержни и трубы, выполняется их приварка к поверхностям деталей.
При вращении, прижатые усилием Р торцевые поверхности детали нагреваются до 900–1300° С; вращение прекращается, а усилие прижима увеличивается в 2–3 раза,
и происходит сварка деталей давлением.
Сварка трением выполняется относительно быстро, имеет высокий КПД и высокую производительность. Так, для сравнения, электроконтактная сварка деталей поперечного сечения 750 мм 2 выполняется за 12 секунд при потребляемой мощности 110 кВт, а при сварке трением такой же детали время сварки почти такое же — 10 секунд, но достаточно всего 5,4 кВт мощности. Недостатки этого способа: ограниченная область применения (только для тел вращения)
и сравнительно небольшие размеры деталей.
Электронно-лучевая сварка (рис. 2.33) из-за технологической сложности не получила широкого распространения, но является перспективной вследствие высокой производительности, малой зоны термического влияния и хорошего качества сварного шва.
Сварка проводится в вакуумной камере, где и помещается деталь, перемещающаяся со скоростью сварки. Переменный ток низкого напряжения нагревает вольфрамовый катод, который испускает электроны, электрическим или магнитным полем фокусирующиеся в электронный луч. Для усиления эмиссии к детали и катоду подводится выпрямленный ток высокого напряжения. В результате получается узкий
и глубокий шов и малая зона термического влияния.
Механизированные способы сварки и наплавки
Основные недостатки ручной сварки и наплавки заключаются в том, что эти процессы характеризуются низкой производительностью, высокой трудоемкостью, тяжелыми условиями труда. Качество восстановления деталей во многом зависит от квалификации рабочего. Все это вызвало потребность в разработке механизированных способов сварки и наплавки. В зависимости от степени механизации их делят на автоматические и полуавтоматические способы. При автоматической сварке (наплавке) все процессы, связанные с формированием шва или наплавленного слоя, механизированы (подача электрода в зону сварки, перемещения электрода или детали, поддержание стабильности горения дуги и др.). При полуавтоматической сварке (наплавке) механизированы подача электрода и защитной среды. Механизированные способы характеризуются высокой производительностью, качеством и культурой труда.
На ремонтных предприятиях получили широкое распространение механизированные способы наплавки и сварки под слоем флюса, в среде защитных газов, вибродуговая, плазменная, электрошлаковая наплавка и другие способы.
Наплавка деталей под слоем флюса. Способ наплавки заключается в том, что в зону горения дуги между электродом и деталью подается сыпучий зернистый материал, называемый флюсом. Под действием тепла дуги флюс плавится и дуга горит под жидким слоем расплавленного флюса, который надежно защищает расплавленный металл от окружающего воздуха. Жидкий слой флюса уменьшает разбрызгивание металла, улучшает формирование шва и использование теплоты дуги. При перемещении детали относительно дуги ванна расплавленного металла остывает. Шлаковая корка, образующаяся при застывании, замедляет охлаждение расплавленного металла, способствует его очищению от неметаллических включений и лучшему формированию. Применение флюса улучшает стабильность горения дуги и дает возможность в широких пределах изменять свойства наплавляемого металла, легируя его через флюс. Электродный материал в виде проволоки или ленты непрерывно подается в зону сварки специальным механизмом. Небольшой вылет электрода (расстояние от мундштука до детали) дает возможность увеличить плотность сварочного тока до 150 — 200 А/мм 2 . Благодаря применению больших значений силы тока и незначительным потерям металла на разбрызгивание и угар (не более 4%) производительность наплавки под слоем флюса в 6—10 раз выше, чем ручной. Наплавку под слоем флюса применяют на специализированных ремонтных предприятиях для восстановления большой номенклатуры крупногабаритных деталей, имеющих значительный износ (опорные катки, направляющие колеса, поддерживающие ролики гусеничных машин, коленчатые валы, ножи бульдозеров и грейдеров и т.д.).
Флюсы. Для сварки и наплавки применяют флюсы двух видов (в зависимости от способа их получения) — плавленые и наплавленные (керамические)- Плавленые флюсы получают сплавлением всех необходимых компонентов (газо-, шлакообразующих, легирующих, раскисляющих, связующих и др.) в специальных печах при температуре 1200°С с последующим измельчением до зерен размером 1—4 мм. При восстановлении деталей применяют плавленые флюсы АН-348А, АН-348М, ОСЦ-45; для наплавки легированных сталей – АН-22, АН-20, АН-60.
Керамические флюсы по своему составу во многом сходны с качественными (толстыми) покрытиями электродов. Для . приготовления керамических флюсов механическую смесь всех необходимых компонентов тщательно перемешивают и добавляют 17—18% жидкого стекла, измельчают протиранием через сито, сушат при температуре 200°С, просеивают, а затем прокаливают при температуре 300— 400°С. Наибольшее при менение для наплавки деталей получили флюсы АНК-18, АНК-19, АНК-30, ЖСН-1 и др. Эти флюсы по сравнению с плавлеными содержат до 50% неокисленных элементов, что дает возможность активно влиять на металлургические Процессы, происходящие при наплавке, управлять Ими. Они позволяют в широком диапазоне легировать наплавленный металл при использовании дешевой малоуглеродистой проволоки.
Используют при наплавке также флюсы — смеси, которые приготавливают из плавленых и керамических флюсов в различных соотношениях в зависимости от требуемых свойств наплавленного металла.
Преимуществом сварки и наплавки под слоем флюса является: высокая производительность и стабильность процесса, хорошее качество наплавленного слоя (плотность, однородность), прочное сцепление наплавленного слоя с основным металлом, возможность получения слоев значительной толщины и с заданными свойствами. Недостатки способа быстрый и глубокий нагрев деформирует детали малого диаметра, трудность в отделении шлаковой корки при перегреве детали, невозможность наплавлять детали малого диаметра (менее 40 Мм) из-за трудности удержания флюса и сварочной у” ванны, невозможно получить толщину слоя менее 2 мм.
Механизированные методы сварки и наплавки
Автоматическая наплавка под слоем флюса — один из прогрессивных и широко применяемых способов восстановления деталей на ремонтных предприятиях. Впервые он был разработан Киевским институтом электросварки им. Е. О. Патона.
Сущность этого способа заключается в следующем. К дуге, образующейся между электродом 6 и поверхностью вращающейся детали, через мундштук специальным устройством (автоматом) непрерывно подается электродная проволока, а из бункера слоем 50…60 мм насыпается гранулированный флюс. Дуга, утопленная в массе флюса, горит под жидким слоем расплавленного флюса в газовом пространстве. Жидкий слой флюса надежно предохраняет расплавленный металл от окружающего воздуха, в большой степени уменьшает разбрызгивание металла, улучшает формирование шва, использование теплоты дуги и материала электродной проволоки. Шлаковая корка, образующаяся при остывании, замедляет охлаждение расплавленного металла и улучшает условия формирования его структурных превращений. Небольшой вылет электрода (расстояние от мундштука до детали) дает возможность увеличить плотность применяемых сварочных токов до 150…200 А/мм2. Значительно улучшаются условия труда сварщика. Потери на угар и разбрызгивание металла при наплавке под слоем флюса не превышают 2% от массы расплавленного металла. Коэффициент наплавки составляет 14…16 г/А-ч, то есть в 1,5…2 раза выше, чем при ручной сварке.
Рекламные предложения на основе ваших интересов:
Рис. 1. Схема автоматической наплавки под слоем флюса:
1 — деталь; 2 — слой флюса; 3 — газовое пространство; 4 — бункер с флюсом; 5 — мундштук; 6 — электрод; 7 — электрическая дуга; 8 — шлаковая корка; 9 — наплавленный слой (шов).
При наплавке под слоем флюса оба сомножителя в этой формуле значительно больше, чем при ручной сварке, поэтому производительность возрастает в 6… 10 раз.
Недостатки сварки под слоем флюса — невидимость дуги и значительные расход и стоимость флюса. Невидимость места сварки требует повышенной точности подготовки изделия к процессу и сборке, а кроме того, затрудняет сварку при сложной конфигурации шва.
Автоматическую наплавку под флюсом применяют для восстановления плоских и цилиндрических деталей. Изношенные тракторные и автомобильные детали наплавляют на специальных токарных станках, которые оборудуют редуктором, позволяющим получать частоту вращения шпинделя в пределах от 0,2 до 5 мин“1.
Сварочную головку устанавливают на суппорте станка. Для подвода тока к детали на шпинделе устанавливают токосъемник. Деталь, подготовленную к наплавке, зажимают в токарном патроне или в центрах. Наплавка деталей диаметром менее 80 мм затруднительна, а диаметром менее 40 мм совсем невозможна. Это следует отнести к недостаткам данного способа. Чтобы получить шов хорошего качества на поверхности детали, электрод смещают от зенита в направлении против вращения детали на размер а. Смещение зависит от диаметра детали, силы сварочного тока, длины и напряжения дуги, частоты вращения. При наплавке деталей диаметром 80…300 мм смещение электрода колеблется от 5 до 30 мм, с уменьшением диаметра смещение увеличивается. В каждом конкретном случае смещение электрода определяют опытным путем по качеству шва.
Хорошее качество наплавки во многом зависит от применяемого флюса. При автоматической наплавке используются плавленые и неплавленые керамические флюсы, а также флюсы-смеси.
Плавленые флюсы представляют собой сравнительно сложные силикаты, по своим свойствам близкие к стеклу. Температура их плавления не более 1200 °С. По размеру зерен (0,1…5 мм) оНи стандартизированы на четыре группы. В состав плавленых флюсов не входят ферросплавы, свободные металлы, углеродистые вещества. Эти флюсы, как правило, слабые раскислители. В ремонтной практике наибольшее применение получили плавленые флюсы ДН-348А, ОСЦ -45 и АН-15, содержащие в своем составе 35…43% закиси марганца. Такие флюсы позволяют получить наибольшую устойчивость дуги, меньше выделяют вредных примесей и в сочетании с углеродистыми и низколегированными проволоками способствуют высокому качеству наплавки.
Керамические флюсы по своему составу и способу приготовления во многом сходны с качественными (толстыми) покрытиями электродов. Эти флюсы наряду с защитными содержат легирующие и модифицирующие элементы. В отличие от плавленых флюсов керамические позволяют в широком диапазоне легировать наплавленный слой и при использовании даже дешевой низкоуглеродистой проволоки получать качественные износостойкие покрытия. Размер зерен выпускаемых керамических флюсов 1..3 мм. Наибольшее применение для наплавки деталей получили флюсы АНК -3, АНК -30, АНК -18, АНК -19 и ЖСН -1.
Флюсы- смеси приготавливают преимущественно из плавленых и керамических в различных соотношениях в зависимости от того, какие свойства важно получить в наплавленном металле. При смешивании необходимо, чтобы размер зерен и их плотность были близкими. Иногда в плавленые флюсы добавляют до 40% чугунной стружки, которая повышает коэффициент наплавки и твердость наплавленного слоя за счет его науглероживания.
Электродная проволока для наплавки изношенных деталей под слоем флюса выбирается принципиально так же, как и при ручной наплавке. Кроме сварочной проволоки типа Св, широко используют специальную наплавочную проволоку типа Нп (Нп-30, Нп-50Г, Нп-30Х5, Нп-45Х4ВЗФ и др.).
Все большее распространение при восстановлении деталей получают порошковые проволоки. Они представляют собой непрерывный электрод диаметром 2,5…5,0 мм, состоящий из металлической оболочки, заполненной порошком. В качестве наполнителя применяют смесь металлических порошков, ферросплавов, шлако-и газообразующих и других элементов, подобных используемым для электродных покрытий. Изменение состава наполнительных порошков позволяет с достаточно большой точностью получать необходимое качество наплавленного слоя без дополнительной защиты зоны наплавки флюсом или другим способом.
Порошковые проволоки марок ПП-АН1, ПП-1ДСК и другие при сварке или наплавке низко- и среднеуглеродистых сталей позволяют получать хорошее качество шва без дополнительной защиты. Самозащитные проволоки марок ПП-ЗХ13-0, ПП-ЗХ4ВЗФ-0 и другие дают поверхность повышенной износостойкости с твердостью до HRC 56 без термической обработки.
Повышение производительности при восстановлении сильно изношенных деталей (опорных катков, поддерживающих роликов, направляющих колес гусеничных тракторов и др.) достигают применением двух и многоэлектродной наплавки, а также наплавки стальным или порошковым ленточным электродом.
Автоматической наплавкой под слоем флюса восстанавливают шейки коленчатых валов и другие ответственные детали, поверхности которых находятся в условиях повышенного изнашивания.
Автоматическая наплавка в среде защитных газов. Во многих случаях, когда затруднительно, невозможно или слишком дорого применять сварку под слоем флюса, используют другие защитные среды: аргон, углекислый газ, пар и т. п. Наибольшее применение в ремонте машин получил углекислый газ.
Сущность процесса наплавки в среде углекислого газа заключается в следующем. Газ подается в зону сварки из специальных горелок, монтируемых на автоматических сварочных головках, а также с помощью специальных аппаратов, предназначенных для сварки в среде углекислого газа. Из баллона по трубке углекислый газ поступает в сопло горелки, прикрепленной к мундштуку. Омывая наконечник и электродную проволоку, углекислый газ оттесняет воздух и защищает зону сварки от воздействия азота и кислорода.
Преимущества этого способа: видимость места сварки, отсутствие шлаковой корки, дешевизна углекислого газа по сравнению с флюсом и возможность наложения неудобных и сложной конфигурации швов вплоть до потолочных.
Применение тонкой электродной проволоки толщиной 0,5…1,2 мм на малых токах в сочетании с видимостью процесса дало возможность широко использовать этот способ при ремонте кузовов, кабин и оперения тракторов и автомобилей.
Недостаток наплавки в среде углекислого газа — повышенная податливость наплавленного слоя к образованию трещин, а также к выгоранию легирующих элементов. Этому способствует разложение углекислого газа при высоких температурах на оксид углерода и атомарный кислород. Вредное явление предупреждают, применяя электродную проволоку с повышенным содержанием марганца, кремния, хрома, титана и других раскислителей.
Иногда вместо углекислого газа для защиты зоны сварки применяют пар. В этом случае изготавливают новое сопло горелки, которое отличается тем, что во внутренней части сделана кольцевая полость для сбора конденсата. Пар значительно дешевле флюса и углекислого газа, но наплавляемый шов может получаться с порами и трещинами. Поэтому пар применяют для наплавки неответственных деталей: опорных катков, поддерживающих роликов, направляющих колес и др.
Рис. 2. Схема автоматической наплавки в среде углекислого газа:
1 — мундштук; 2 — трубка для углекислого газа; 3 — сопло; 4 — наконечник; 5 — электродная проволока.
Оборудование для автоматической наплавки состоит из источника питания током, сварочной головки и станка для наплавки или переоборудованного токарного станка.
Источники питания током. Обычно используют постоянный ток, потому что при переменном токе сложнее добиться устойчивого горения дуги. В качестве источника тока используют сварочные преобразователи типа ПСО -300, ПД-501, ГД-502 или универсальные сварочные выпрямители типов ВДУ -305, ВДУ -504, ВДУ -1201 и ВДУ -1601. Кроме того, для автоматической сварки и наплавки промышленность выпускает специальные выпрямители типа ВДГ -601.
Сварочная головка — основной элемент автоматической наплавочной установки. Она состоит из подающего механизма с электродвигателем и редуктором, позволяющим изменять скорость подачи проволоки в широком диапазоне; кассеты для электродной проволоки; бункера для флюса и аппаратного ящика или щита управления. На ремонтных предприятиях применяют головки марок А-580М, А-874М, А-874С, А-384МК, ОКС -5523 ГОСНИТИ и др.
Наряду с автоматами для сварки и наплавки широко применяют полуавтоматы. В них механизирована только подача прго-волоки и флюса, а сварочную дугу перемещают вручную. Поэтому токопроводящий мундштук отделен от механизма подачи проволоки и выполнен в виде держателя для удобства пользования. Механизм подачи проволоки соединен с держателем гибким шлангом, внутри которого проходит электродная проволока. Это дает возможность большой маневренности. Таким полуавтоматом можно сваривать швы любой конфигурации даже в труднодоступных местах.
Деление сварочных аппаратов на автоматы и полуавтоматы можно считать условным. Достаточно закрепить держатель полуавтомата на суппорте токарного станка, а свариваемой детали сообщить постоянную скорость движения в направлении свариваемого шва, как полуавтомат превращается в автомат. Поэтому полуавтоматы на ремонтных предприятиях используют более широко, чем автоматы. По своему назначению полуавтоматы условно разделяют на полуавтоматы для сварки под слоем флюса, в защитных газах, универсальные и специальные.
г Для сварки под слоем флюса используют полуавтоматы ПШ-54, ПДШМ -500 и ПДШР -500, но в ремонтной практике они не получили большого применения из-за невидимости дуги при сварке и низкой маневренности. В ремонте более широко используют полуавтоматы марок А-547У, А-547Р, ПДПГ -500, А-929С и другие для сварки в защитных газах и универсальные полуавтоматы марок А-715, А-765, А-1197 и др. Универсальные полуавтоматы снабжены сменным унифицированным оборудованием, позволяющим использовать их для сварки и наплавки под слоем флюсов, в защитных газах, а также сплошной и порошковой проволоками.
Специальные полуавтоматы выпускают для выполнения сварки в монтажных или полевых условиях и, кроме того, для сварки цветных металлов.
Переносные полуавтоматы А-1114 и ранцевого типа ПДГ -304 предназначены для сварки в монтажных и полевых условиях на постоянном токе проволокой диаметрами от 0,8 до 2 мм. Полуавтомат ПШП -10 предназначен для сварки алюминия и его сплавов в защитных газах.
Станки для наплавки. В качестве устройства для перемещения наплавляемой детали, автоматической и сварочной головки на ремонтных предприятиях часто используют токарный станок, оборудованный специальным редуктором, понижающим частоту вращения шпинделя. Наплавляемую деталь крепят в шпинделе или в центрах станка, а сварочную головку — на суппорте. Но уже разработаны универсальные (У-651, У-652 и др.) и специализированные (У-425, У-427 и др.) наплавочные станки.
Вибродуговая наплавка — разновидность автоматической наплавки под слоем флюса и в защитных газах. Она отличается тем, что сварку ведут проволочным электродом с частотой 50…110 колебаний в секунду. Амплитуда колебаний электрода относительно наплавляемой детали обычно составляет 1…3 мм. Вибрация электрода существенно влияет на качество наплавки и на весь ход процесса и дает ряд преимуществ по сравнению с обычной электродуговой наплавкой.
В связи с разрывом дуги при вибродуговой наплавке происходит мелкокапельный переход металла с электрода на деталь; образуется минимально возможная сварочная ванна, способствующая достаточно хорошему сплавлению электродного металла с основным, небольшому нагреву детали и созданию малой по глубине зоны термического влияния. Кроме того, уменьшается выгорание легирующих элементов электродной проволоки по сравнению с обычной дуговой наплавкой. Вибродуговой наплавкой можно получить сравнительно тонкие и весьма прочные покрытия толщиной 0,8…2,5 мм на круглых деталях диаметром от 15 мм и больше.
Часто при вибродуговой наплавке используют охлаждающую жидкость (3…5%-ный водный раствор кальцинированной соды), которую подают н,а деталь в виде струи на 15…20 мм выше зоны горения дуги.
Наряду с преимуществами вибродуговая наплавка имеет и целый ряд недостатков. Наплавленный слой часто получается пористым и неоднородным по твердости и структуре металла. В результате усталостная прочность деталей снижается почти в 2 раза. В связи с этим применение вибродуговой наплавки для восстановления ответственных деталей, подвергающихся большим знакопеременным и циклическим нагрузкам (цапфы, коленчатые валы и др.), весьма ограниченно. Производительность вибродуговой наплавки ниже обычной автоматической, а потери на разбрызгивание и угар выше и достигают 6…8%.
Вибродуговую наплавку ведут преимущественно на постоянном токе обратной полярности при напряжении 12…20 В и плотности тока 50…70 А/мм2.
Для получения износостойких слоев применяют высокоуглеродистые наплавочные проволоки Нп-65, Нп-80, Нп-65Г, пружинную и др- Качество наплавки повышают, защищая зону сварки углекислым или другими газами.
В качестве источников питания используют такие же преобразователи и выпрямители, как при обычной автоматической наплавке.
Сварочные головки принципиально устроены так же, как и автоматические сварочные головки, но в отличие от последних не имеют бункера для флюса и снабжены вибратором. На ремонтных предприятиях в основном применяют наплавочные головки с механическим вибратором ОКС -1252, ОКС -6569, ВГ-4, ВГ-5 и ВГ-8М. Последняя предназначена для вибродуговой наплавки в среде углекислого газа.
Источники:
http://studopedia.su/13_148974_mehanizirovannaya-naplavka-i-svarka.html
http://studopedia.ru/1_77309_mehanizirovannie-sposobi-svarki-i-naplavki.html
http://stroy-technics.ru/article/mekhanizirovannye-sposoby-elektrodugovoi-svarki-i-naplavki