1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Механизированная сварка плавящемся электродом в активном газе

Механизированная сварка

Механизированная или частично механизированная сварка является дуговой сваркой, в процессе которой плавящийся электрод и дуга перемещается при использовании каких-либо механизмов или специального оборудования, специально для этого предназначенного. При помощи данного вида сварки можно выполнять любые сварочные работы, к примеру с нахлестом, тавровые, угловые или стыковые.

Автоматическая дуговая сварка является дуговой сваркой, при которой дуга возбуждается. А электрод подается при помощи только механизированного оборудования, а человек при этом вообще не принимает участие в процессе. Все происходит по четко заданной программе, которая продумывается заблаговременно.

Механизированная и автоматическая дуговая сварка подразумевает образование соединения особым образом. Происходит расплавление электрода и сварочного металла, капли данных материалов отправляются в сварочную ванну, а затем тщательно перемешиваются между собой. Жидкий металл обрабатывается при использовании дополнительного флюса или газа, что кардинально отличает автоматизированную сварку от ручной. Металл начинает раскисляться и легироваться. Дуга перемещается около свариваемых кромок, а также приходит в движение сварочная ванна.

Существует несколько видов сварки механизированного типа

  1. Углекислый газ и его смеси с кислородом сваривает стальные изделия со средним содержанием углерода и низколегированные. Углекислый газ способен варить сталь при толщине 40 мм, а смеси газов могут справиться с толщиной 80 мм. В процессе сварки газы повышают ее свойства и характеристики. Углекислый газ расходуется в зависимости от того, насколько мощная дуга участвует в процессе, типа электрода, какие потоки воздуха в помещении в процессе сваривания металлов.
  2. Инертные газы, к примеру аргон или гелий, способен сваривать алюминиевые детали, магниевые, титановые или различные сплавы из этих материалов. Сварить можно любые легированные стали и со средним и низким содержанием углерода. Использовать данные газы рекомендуется, ведь гелий имеет плотность намного меньше, чем воздух, а аргон наоборот. Также данные газы не образуют химические соединения с металлическими конструкциями, поэтому в них можно сварить любые сплавы или металлы.
  3. При помощи флюса можно сваривать легированные стали, со средним или низким содержанием углерода. Также прекрасно для этого подходят титан, алюминий, чугун, медь или сплавы из данных материалов.

Флюс является порошкообразным материалом, который в процессе сварки обеспечивает функции электродов при ручной сварке. Его основа состоит из силиката марганца. Также флюсы можно разделить на две разновидности:

Неплавленными называют флюсы спеченные или керамические. Плавленные получаются при плавлении в печи определенных компонентов и составов. Керамические флюсы включают в себя порошковые материалы, которые соединяются в небольшие зерна специальными веществами, к примеру это может быть жидкое стекло. Спеченные флюсы спекают в печах, причем для этого используются те же порошкообразные вещества и высокие температуры, а потом частицы раздрабливаются до необходимого размера.

При сварке некоторые частицы флюса расплавляются, а когда затвердевают, становятся похожи на шлаковые корки. Не расплавленный флюс можно использовать в дальнейшем после того, как он просеивается.

При помощи порошковых проволок можно сварить низколегированные и низкоуглеродные стали, а при порошковых проволоках и высоколегированные, а также нержавейку и медные детали и сплавы. Они могут достигать толщины около 40 мм. Порошковые проволоки имеют оболочку из металла, которая заполняется шихтой.

Самой простой конструкцией из всех является порошковая проволока с трубчатым поперечным сечением. Чтобы сделать ее более жесткой, а также изменить соотношение металлических компонентов, необходимо применять проволоку, в которой во внутренней полости кромки металлов немного отогнуты в стороны.

Важно! Металл внутри оболочки рекомендуется выбирать в прямой зависимости от того, какой металл необходимо будет сваривать.

В шихту данного вида проволоки необходимо ввести компоненты, которые способны справляться с некоторыми функциями:

  • защита расплавляемого металла от кислородного воздействия и азота, окисления и легирования металлов;
  • дуга начинает гореть стабильно и равномерно;
  • шов формируется намного лучше и качественнее.

Применяется три разновидности порошковых проволок при механизированной сварке. Они могут быть:

  • самозащитные, для сваривания в углекислом газе;
  • для сваривания при помощи флюса;
  • самозащитные порошковые проволоки, которые не требуют дополнительного флюса и использования углекислого газа.

Технология для механизированной сварки

Для автоматической и механизированной сварки используются автоматические и полуавтоматические приспособления и аппараты. Они комплектуются источниками тока, для того, чтобы питать дугу.

Данные автоматы рассчитаны на выполнение таких функций, как:

  • возбуждение и приведение дуги в движение;
  • регулировка сварочного процесса;
  • электродная проволока подается с такой же скоростью плавления, которая необходима при сварке;
  • дуга передвигается равномерно около свариваемых кромок.

Полуавтоматическое оборудование имеет два основных устройства. Самоходная головка или трактор, а также аппаратуру для управления.

Сварочные автоматы для сваривания в газовых образованиях включают в себя специальные газовые редукторы, баллоны с кислотами, подогреватели и осушители, которые необходимы для очищения газов от лишней влажности.

При помощи трактора подается электродная проволока, а ток проводится к сварочному месту. Механизированный способ сваривания при помощи электродных проволок обычно включает в себя два ролика, один ведущий, а другой вспомогательный. Именно они надежно удерживают проволоку и сжимают ее с нужной силой. Они наматывается на специальные кассеты, поэтому происходит проталкивание через шланги, а затем при помощи тога подается в зону расположения дуги.

У сварочного автоматического оборудования под флюсом есть специальные системы, которые убирают излишки флюса. Трактор для сварки при помощи защитных газов есть горелка, которая направляет в необходимую зону электродную проволоку, подводит к ней ток и подает газовые образования в нужное место. На месте горелки обычно располагается держатель, который подает флюс через специальный бункер.

Механизированная и автоматическая сварка и ее применение

Механизированная сварка помогает накладывать прямые и кривые швы, а также позволяет производить сваривание в труднодоступных местах. Металлы должны быть средней и небольшой толщины, чтобы обеспечивать надежное и качественное сваривание. Данные виды сварки применяются при ремонтных и производственных работах. Кольцевые и прямолинейные швы при использовании на производстве, которые имеют длину больше 300 мм, обычно выполняются только при использовании автоматического сварочного оборудования.

При транспортном и машиностроительном производстве механизированная сварка плавящимся электродом применяется при производстве локомотивов или вагонов. Балки необходимо сваривать под флюсом на потоке. Рамы обычно сваривают при помощи углекислого газа. В сельском хозяйстве и производствах оборудования практически около 80 % работ выполняется при помощи углекислого газа.

Читать еще:  Баня из профилированного бруса с фундаментом и кровлей

При автоматической сварке при применении флюса и углекислого газа в основной массе свариваются трубы и другие детали, которые имеют большой диаметр.

Механизированная сварка с применением дополнительного флюса, углекислого газа и порошковых проволок постоянно используется в строительстве печей, для специальных резервуаров для хранения опасных и легко возгораемых веществ, для строительства мостов и судов, а также в других видах производств.

Сварка плавящимся электродом в среде защитного газа. Оборудование

Процесс сварки в защитном газе, gas metal arc welding (GMAW), был разработан и стал коммерчески доступен в 1948 году, хотя основные понятия были введены в 20-х годах XX века. Сварка в защитном газе плавящимся электродом, metal inert gas (MIG), была запатентована в США в 1949 году для сварки алюминия. Дуга и сварочная ванна формировались из чистого токопроводящего электрода и защищались гелием. В 1952 году процесс стал популярен в Великобритании. В качестве защитного газа для сварки алюминия стали использовать аргон, а для углеродистых сталей — углекислый газ и смесь аргона с углекислым газом. Углекислый газ относится к активным газам, и, соответственно, процесс стал называться metal active gas (MAG) processes.

GMAW процесс использует как с полуавтоматическим, так и с автоматическим оборудованием. Этим процессом могут свариваться большинство металлов, а при низких энергетических показателях процесса сварка может производиться во всех пространственных положениях. GMAW — экономный процесс, который практически не требует очистки сварного шва. Уменьшаются неровности шва и обработка металла шва минимальная по сравнению со сваркой покрытыми электродами.

MIG/MAG — дуговая сварка плавящимся металлическим электродом (проволокой) в среде инертного/активного газа с непрерывной автоматической подачей электродной проволоки. Зона сварки защищается извне подаваемым газом. GMA сварка с успехом применяется при автоматизированной и роботизированной сварке. Наибольшее распространение получила полуавтоматическая сварка, как наиболее универсальная. Иногда этот метод сварки обозначают GMA (Gas Metal Arc). Применение термина не вполне корректно, поскольку оборудование предусматривает автоматическое саморегулирование дуги и скорость плавления электрода. Единственное ручное управление, требуемое от сварщика при полуавтоматической сварке, — позиционирование и перемещение с определенной скоростью сварочной горелки. Длина дуги и сварочный ток поддерживаются автоматически.

Управление процессом сварки и режимом дуги осуществляется тремя основными элементами установки для сварки в защитном газе:

1) сварочная горелка и подающий рукав;

2) механизм подачи проволоки;

3) источник сварочного тока.

Сварочная горелка и подающий рукав выполняют три функции — подают защитный газ в область горения дуги, подают сварочную проволоку к контактному наконечнику и подводят сварочный ток к контактному наконечнику. На рукоятке горелки имеется выключатель, нажатие на который включает и выключает сварочный ток, подачу проволоки и подачу газа.

Механизм подачи сварочной проволоки и источник сварочного тока для обеспечения автоматического саморегулирования длины дуги соединены обратной связью. Для MIG/MAG сварки применяются два типа источников сварочного тока: источник с постоянным (неизменным) током и источник с постоянным (неизменным) напряжением.

Источник сварочного тока. Источник сварочного тока поставляет электроэнергию дуге, горящей между электродом и заготовкой. В большинстве случаев для GMAW процессов используется постоянный ток обратной полярности, т. е. плюс на электроде, минус на изделии.

Большинство установок MIG/MAG сварки имеет источник сварочного тока с постоянным (неизменным) напряжением и с постоянной скоростью подачи электродной проволоки, т. е. блок питания поддерживает постоянное напряжение в процессе сварки. Основная причина широкого распространения таких источников сварочного тока — самокорректирующаяся длина дуги, присущая этой системе.

Для саморегулирующих систем источник питания должен иметь жесткую, пологопадающую характеристику. Напряжение дуги задается установкой выходного напряжения в блоке питания. Скорость подачи электродной проволоки во время сварки неизменна. Наибольшее распространение этот вид источника питания получил в установках полуавтоматической (ручной) сварки, т. е. когда происходят быстрые и частые изменения длины дуги. При этом даже незначительное изменение длины дуги вызывает, соответственно, незначительное изменение напряжения на дуге, dU. Это, в свою очередь, вызывает значительное изменение сварочного тока, dI, и как следствие изменяется скорость плавления проволоки.

Рисунок 4 схематически иллюстрирует механизм автокоррекции. Когда сварочная горелка отодвигается от изделия, увеличивается расстояние L между сварочной проволокой и изделием, при этом увеличивается напряжение на дуге.

Желаемая длина дуги выбирается путем регулирования выходного напряжения источника сварочного тока, и никакие другие изменения в процессе сварки не требуются. Скорость подачи проволоки задается сварщиком до начала сварки и может регулироваться в больших пределах.

Некоторые установки GMAW сварки, тем не менее, используют блоки питания с постоянным (неизменным) током. При этом источник сварочного тока имеет крутопадающую характеристику, т. е. незначительное изменение длины дуги вызывает незначительное изменение сварочного тока, но значительное изменение напряжения на дуге. В ответ на изменение напряжения на дуге система изменяет скорость подачи проволоки, увеличивая или уменьшая ее.

Сварочный ток устанавливается соответствующей установкой в блоке питания. Длина дуги и, соответственно, напряжение на дуге управляются и поддерживаются автоматической подачей электродной проволоки. Этот тип сварки лучше всего подходит при сварке электродной проволокой большого диаметра установками автоматической сварки, когда не требуется быстрого изменения скорости подачи проволоки. Система несаморегулирующаяся.

Вольт-амперная характеристика источника сварочного тока имеет наклон. Наклон кривой отражает характеристику блока питания и измеряется в омах, т. е.

Наклон = dU/dI = Ом.

Это уравнение показывает, что наклон вольт-амперной характеристики эквивалентен сопротивлению. Тем не менее, наклон характеристики обычно определяют как изменение напряжения при изменении тока на 100 А. Например, наклон 0,03 Ом представляет изменение напряжения на 3 В при изменении сварочного тока на 100 А.

Наклон характеристики можно вычислить, зная напряжение холостого хода источника питания, сварочный ток и напряжение на зажимах источника питания при сварке, например если напряжение холостого хода Uxx = 48 В, а рабочей точке соответствуют 28 В и 200 А, то наклон: (48 — 28)/200 = 10 В на 100 А.

Читать еще:  Винтовая лестница из металла своими руками

От наклона вольт-амперной характеристики источника питания зависит ток короткого замыкания: чем больше наклон, тем меньше ток короткого замыкания.

Сварочная горелка. Сварочная горелка предназначена для подачи сварочной проволоки и защитного газа в зону сварки и передачи сварочного тока сварочной проволоке. Существует множество разновидностей горелок, как с воздушным, так и с водяным охлаждением, с прямыми и изогнутыми соплами. Горелки с изогнутыми соплами облегчают выполнение сварных швов в труднодоступных местах и углах.

Основные детали горелок (рис. 5):

    • контактная трубка;
    • сопло;
    • подающий рукав;
    • направляющий канал;
    • выключатель.

Контактная трубка, обычно выполненная из меди или медного сплава, предназначена для передачи сварочного тока электродной проволоке и направления проволоки к месту сварки. Контактная трубка присоединяется к сварочному кабелю. Поскольку электродная пpoвoлка движется непрерывно, втулка имеет скользящий контакт для передачи сварочного тока с кабеля на электрод. Большое значение имеет качество внутренней поверхности трубки, так как электрод должен легко скользить в ней, но в то же время иметь хороший контакт. Для минимизации нагрева корпуса горелки периодически по мере износа контактной трубки ее необходимо заменять. Для каждого диаметра электродной проволоки предназначена своя контактная втулка.

Сопло равномерно направляет струю защитного газ в зону сварки. Равномерность потока чрезвычайно важна в обеспечении требуемой защиты расплавленного металла сварочной ванны от воздействия атмосферы. Размер сопла выбирают в зависимости от режима сварки, т. е. сопло большого диаметра предназначено для сварки с большой плотностью сварочного тока, когда сварочная ванна имеет большой размер.

Подающий рукав и направляющий канал подключаются к механизму подачи электродной (сварочной) проволоки и подают электродную проволоку от механизма подачи к сварочной горелке. Для уменьшения трения и облегчения скольжения электронной проволоки направляющий канал подающего рукава имеет тефлоновое покрытие. При выполнении сварочных работ не допускается скручивать кольцами подающий рукав и сильно изгибать его. Стандартная длина подающего рукава 3-4 м. Более длинные поставляются по специальному заказу.

При большой длине подающего рукава иногда применяется горелка с небольшим встроенным механизмом подачи проволоки. Такая система позволяет тянуть проволоку от удаленного механизма подачи проволоки.

Электродная проволока. Сварка в защитном газе производится сплошной или порошковой проволокой диаметром 0,5-2,4 мм (в аргоне — до 4 мм). Выбор электродной проволоки производится в зависимости от материала свариваемого изделия и режима сварки. Экономически выгодно использовать предельно допустимый режим сварки. В табл. 10 приведен выбор, а в табл. 11 — краткая характеристика некоторых марок электродной проволоки.

Для GMAW процессов сварки наиболее часто применяется проволока СВ08Г2С (ГОСТ 2246-70), имеющая следующий состав: углерод — 0,05-0,11%; марганец — 1,8-2,10%; кремний — 0,7-0,95%; сера — . Механизм подачи проволоки предназначен для работы в составе сварочных полуавтоматов при проведении сварочных работ в производстве, где необходима сварка деталей, узлов и сборок, изготовленных из углеродистых и легированных сталей.

Конструктивно механизм подачи проволоки выполнен в виде переносного устройства. На передней панели расположены:

    • индикатор , сигнализирующий о включении механизма подачи проволоки, исправном состоянии и готовности к работе;
    • регулятор для регулирования выходного напряжения сварочного выпрямителя;
    • регулятор скорости подачи электродной проволоки;
    • переключатель прерывистого/непрерывного режима сварки;
    • переключатель для выбора режима управления с кнопки на сварочной горелке (двухтактный или четырехтактный режим);
    • кнопка для открывания отсекателя газа и продува шланга подачи газа перед работой;
  • выходная розетка для присоединения фидера сварочной горелки.

На боковой панели располагаются ручки управления процессом сварки:

    • регуляторы и для регулирования временных параметров прерывистого режима сварки;
    • регулятор для установки времени подачи газа перед началом процесса сварки ( );
    • регулятор для установки времени подачи газа после завершения процесса сварки ( );
  • регулятор для установки времени заварки кратера ( ) .

На задней панели механизма подачи проволоки размещены:

    • тумблер выключения питания;
    • вилка для подачи питания и осуществления управления источником сварочного тока;
    • вилка для подключения выходного кабеля положительной полярности источника сварочного тока;
    • отверстие для подачи электродной проволоки с катушки внутрь механизма;
  • втулка для присоединения резинового шланга от баллона с защитным газом (на этой втулке с помощью накидной гайки крепится ниппель, на который непосредственно крепится шланг подачи газа) .

На правой боковой стенке под откидной крышкой моноблока расположен люк для осуществления заправки электродной проволоки с катушки через ролики в горелку. Внутри этого люка на стенке расположена кнопка для включения мотора при заправке проволоки в подающий механизм.

Функциональная схема механизма подачи проволоки состоит из трех взаимосвязанных модулей (рис. 6):

    • ПУ МПП — пульт управления механизмом подачи проволоки;
    • MP — мотор-редуктор;
    • ОГ — отсекатель газа.

В зависимости от рабочего состояния механизма подачи проволоки ПУ МПП выдает на индикатор И1 сигнал световой информации о подаче электропитания.

ПУ МПП управляет работой MP и ОГ в зависимости от установок оператора и команд, поступающих от сварочной горелки. ОГ и MP по сигналам ПУ МПП обеспечивают подачу через выходной разъем (BP) и сварочную горелку газа и электродной проволоки. Проволока подается с оптимальным начальным ускорением и установленной оператором необходимой для полуавтоматической сварки рабочей скоростью. С помощью кнопки на сварочной горелке осуществляется управление работой MP и по командам оператора обеспечивается включение и выключение сварочного тока, а также подача газа и электродной проволоки.

Применение механизма подачи проволоки при проведении сварочных работ обеспечивает:

    • плавное регулирование скорости подачи электродной проволоки;
    • стабильность процесса подачи электродной проволоки;
    • простоту заварки кратера сварного шва с использованием режима ;
    • возможность работы в продолжительном режиме, а также в режиме регулируемых коротких швов;
  • возможность двухтактного (путем нажатия и удержания кнопки управления в течение сварочного цикла) и четырехтактного (кратковременным включением и выключением кнопки управления в начале и в конце каждого сварочного цикла) управления процессом подачи проволоки.
Читать еще:  Как крепить мдф на стену своими руками

Перед началом сварки, сварщик должен выбрать размер электрода (диаметр сварочной проволоки), проверить соответствие контактного наконечника горелки выдранному диаметру проволоки, установить напряжение, интенсивность газового потока, скорость подачи электродной проволоки. До ввода сварочной проволоки в горелку необходимо проверить, что подающий ролик, направляющий канал и токоподводящее сопло соответствуют выбранной проволоке. Усилие прижима проволоки должно быть таким, чтобы выходящая через горелку проволока допускала легкое торможение пальцами. Вылет электрода устанавливается в зависимости от диаметра электродной проволоки.

При полуавтоматическом MIG/MAG способе сварка производится сплошной или порошковой проволокой в среде защитного газа. Конструктивно аппараты состоят из выпрямителя с жесткой внешней характеристикой и механизма подачи сварочной проволоки, выполненных или в одном корпусе (компактное решение), или раздельно. В качестве сварочных материалов применяются защитные газы и сварочная проволока соответствующего химического состава (как правило, в катушках). Способ отличается высокой производительностью. Возможна сварка углеродистых и легированных сталей, алюминиевых сплавов и нержавеющей стали.

Современные установки для качественной MIG/MAG сварки обеспечивают:

Борьба за качество сварного шва: автоматическая и механизированная сварка в среде защитных газов

Расплавленный высокотемпературный металл в сварочной ванне активно взаимодействует с газами из окружающей среды. В результате нежелательных химических реакций образуются:

Газы защитные против атмосферных

Один из способов решения этих проблем — создание искусственной прослойки в виде защитных газов между жидким металлом в сварном шве и окружающим воздухом. Инертные или активные газы через сварочные горелки плотной струей под давлением подают в зону сварного соединения. Они создают благоприятную среду для устойчивого горения электрической дуги и протекания под ее воздействием качественных металлургических процессов.

Невидимые защитники

Для этих целей ГОСТом 19521-74 предусмотрено применение:

Двуокись углерода

Газ СО2 (ГОСТ 8050-85) получил наибольшее распространение из-за невысокой стоимости (выделяется как побочный продукт при коксовании углей, обжиге известняка). Является активным. Оттесняя от сварочной ванны вредные газы из окружающей среды, сам способен вступить в химическую реакцию с металлом шва.

При высоких температурах в зоне дуги распадается на окись углерода и свободный кислород. Его нейтрализуют, используя сварочную проволоку или присадочный материал с повышенным содержанием марганца и кремния (ГОСТы 2246-70, 10543-98). Окислы этих элементов выходят на поверхность сплава в виде шлаков.

Сварку в среде углекислого газа применяют для соединения деталей из низколегированных и углеродистых сталей.

Аргон и гелий

Аргон (ГОСТ 10157-79) и гелий (ГОСТ 20461-75) — инертные газы. Они не взаимодействуют с жидким металлом в сварочной ванне.

Аргон, являясь более тяжелым по отношению к воздуху, создает плотную защиту от азота и кислорода из окружающей среды. Используется для получения высококачественных сварных швов углеродистых и высоколегированных сталей, а также для сварки цветных металлов и их сплавов.

Гелий применяется в тех же целях, что и аргон, но значительно реже из-за его высокой стоимости. Чаще используют в виде смеси с аргоном.

Азот и водород

Активные газы азот (ГОСТ 9293-74) и водород (ГОСТ 3022-70) применяются в высокотемпературных процессах с металлами, не вступающими с ними во взаимодействие.

Способы газоэлектрической сварки

Способы сварки в среде защитных газов определены ГОСТом 14771-76:

  • неплавящимися электродами без присадочного (ИН) и с присадочным металлом (ИНп) в инертных газах;
  • плавящимися электродами в СО2 (УП) и инертных газах (ИП).
  1. Металлические.
  2. Неметаллические.

Металлические — вольфрамовые (ГОСТ 23949-80). Используют для сварки сталей и цветных металлов на постоянном, переменном или импульсном (пульсирующим по заданной программе) токе.

Примерная стоимость вольфрамовых электродов на Яндекс.маркет

Сварку с применением этих электродов называют TIG (английский) или WIG (немецкий вариант).

Неметаллические — угольные и графитовые. Применяют в основном для сварки меди, латуни, бронзы и чугуна.

Примерная стоимость угольных электродов на Яндекс.маркет

  • проволочные (сплошные и порошковые);
  • ленточные (сплошные и порошковые).

Если при сварке неплавящимися электродами для заполнения шва металлом в основном используют присадочный материал, то в случае плавящихся — присадкой служат сами электроды.

Содержание химических элементов в материале электрода и порошкового наполнения подбирают в соответствии с составом свариваемых деталей.

Плавящаяся стальная проволока для сварки в защитных газах (ГОСТ 2246-70) предназначена для работы с углеродистыми и низколегированными сталями. Проволочные электроды из цветных металлов (титана, меди, алюминия и сплавов на их основе), как более дорогие, используют, согласно технологическим картам для соединений аналогичных цветных металлов и их производных.

Технологические особенности и оборудование

Сварочные работы в среде защитных газов производятся:

  • полуавтоматами (ГОСТ 18130-79);
  • автоматами (ГОСТ 8213-75);
  • сварочными тракторами.

Газоэлектрическую сварку в среде СО2 осуществляют плавящимся электродом. Преимущественно — на постоянном токе (до 500А) с подключением электрода к плюсу, а свариваемых деталей — к минусу. Требования к источникам питания регламентирует ГОСТ 25616-83.

Сварка в среде аргона производится неплавящимися и плавящимися электродами как на постоянном, так и на переменном токе.

Для плавящихся электродов на постоянном токе, как и в предыдущем случае, используют обратную полярность.

При постоянном токе с вольфрамовым электродом на него подают минус, на детали — плюс. Применение прямой полярности позволяет поддерживать устойчивое горение дуги. Использование переменного тока для этой цели требует наличия стабилизаторов напряжения.

Помимо источника питания, в состав оборудования входят:

  • механизм подачи сварочной (присадочной) проволоки;
  • горелка;
  • баллон с газом;
  • измерительные приборы;
  • дополнительное вспомогательное оборудование.

Примерная стоимость баллона СО2 на Яндекс.маркет

Плюсы и минусы газоэлектрической сварки

К основным преимуществам относят:

  • повышение качественных характеристик металла шва;
  • возможность производить работы при любом положении сварных швов (в отличие от сыпучих флюсов);
  • высокая производительность (при механизации скорость достигает 120 м/час, а при автоматизации – 200 м/час);
  • отсутствие шлакового слоя, что позволяет зрительно контролировать процесс сварки;
  • применение для сварки цветных и тугоплавких металлов;
  • для производства высокоточных работ;
  • благодаря огромной номенклатуре выпускаемых полуавтоматов и автоматов, возможно использование как в промышленных масштабах, так и штучном производстве.

Минусы этого вида сварочных работ:

  • работа с газами требует повышенных мер техники безопасности;
  • высокая стоимость инертных газов.

Источники:

http://svarkagid.com/mehanizirovannaja-svarka/
http://penzaelektrod.ru/svarka-plavyashhimsya-elektrodom-v-srede-zashhitnogo-gaza/
http://elsvarkin.ru/texnologiya/vidy/svarnoi-shov/

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector