Автоматическая сварка под флюсом стал
Выбор режимов автоматической сварки под слоем флюса. Отличие параметров сварки низкоуглеродистых сталей, меди и титана
Выбор режима автоматической сварки под слоем флюса зависит от наименования основного металла, его толщины и формы разделки кромок. Выделяют 4 основных регулируемых параметра:
Также имеются дополнительные параметры, влияющие на определение режима сварки:
- состав (марка) и физико-химические свойства используемого флюса;
- вылет проволоки из токоподводящего наконечника;
- угол наклонения электрода к оси шва.
Порядок расчета режимов
В конструкторской документации задаются толщина свариваемых деталей, тип и форма разделки сварных швов по ГОСТ для соответствующих видов металла и его марок. Технология выполнения работ определяет параметры режима сварки и операции по подготовке свариваемых комок.
Используются следующие формулы для расчета параметров сварки:
Q=(I * U * 60) * к / V, где:
- Q – удельная тепловая энергия (кДж/мм);
- I – сварочный ток (А);
- U – напряжение на дуге (В);
- V – скорость сварки (мм/мин.);
- к – коэффициент полезного тепловложения (для сварки под флюсом К = 0,9).
Коэффициент формы сечения шва рекомендуется в диапазоне 1…1,5. F=S / h, где:
- S – ширина шва;
- h – глубина проплавления.
Режимы автоматической сварки различных металлов под слоем флюса
Рекомендуемые (ориентировочные) режимы стыковых соединений.
медь М1
титан ВТ 1-0
сталь Ст. 20
Табличные режимы сварки являются ориентировочными. Точные параметры режима определяются при сварке опытных соединений на контрольных планках. Это особенно актуально для автоматической сварки под флюсом, так как зона плавления не поддается визуальному контролю во время ведения процесса.
Сварочный ток (I)
Сила тока в сварочной дуге оказывает существенное влияние на глубину провара. Выбор этого параметра зависит от вида металла, его толщины и формы разделки свариваемых кромок.
Полярность тока влияет на перераспределение тепловой энергии между плавящимся электродом и основным металлом. Прямая полярность применяется для увеличения доли наплавляемого металла в металле шва, но отрицательно влияет на устойчивость горения дуги и разбрызгивание сварочной ванны.
Как правило, для сварки под флюсом большинства металлов (за исключением алюминия) применяется подключение сварочного источника с обратной полярностью.
Скорость сварки (V)
Выбор оптимальной скорости сварки обеспечивает правильную форму сечения шва, влияет на время нахождения ванны в жидком виде и протекание тепловых и металлургических процессов при сварке. Оказывает обратное влияние на тепловые вложения и погонную энергию.
Изменение скорости сварки приводит к изменению коэффициента формы сечения сварного шва, его глубины и ширины.
Напряжение сварочного тока (U)
Увеличение напряжения ведет к увеличению контактного пятна сварочной дуги на поверхности металла и, соответственно, к увеличению ширины шва. При низком напряжении формируется вогнутый валик без усиления и образуются подрезы по линии сплавления. Повышенное напряжение приводит к образованию высокого усиления шва с узкой зоной проплавления.
Диаметр электрода (проволоки), (∅)
При установленном токе существует обратно пропорциональная зависимость плотности тока от диаметра проволоки.
Чем меньше диаметр электрода, тем выше плотность тока. С повышением плотности тока коэффициент формы шва стремится к уменьшению.
Влияние дополнительных настроек режима сварки на шов
Для правильного формирования сварного шва необходимо соблюдать соответствие параметров процесса сварки конструкции сварного соединения. Важность правильной настройки особенно актуальна для сварки химически активных при высоких температурах металлов и сплавов. Не следует пренебрегать опытными работами при настройке режима.
Влияние параметров дуги
Напряжение сварочной дуги растет при увеличении ее длины. Это оказывает влияние на образование дугового разряда и стабильность процесса горения.
Повышенное напряжение ведет к росту контактного пятна на поверхности металла и расширению шва.
Влияние угла наклона электрода
Позиционирование электрода относительно поверхности детали оказывает влияние на глубину провара и размеры сварочной ванны. Обычно применяют перпендикулярное расположение электрода к плоскости сварки.
Влияние вылета электрода из токоподающего наконечника
Увеличение вылета приводит к дополнительному нагреву сварочной проволоки, её ускоренному расплавлению и повышению доли электродного металла в металле сварного шва. Оптимальный вылет электродной проволоки в зависимости от ее диаметра указан в таблице.
Технология автоматической сварки под флюсом
Любому практикующему сварщику известно, что кислород оказывает негативное влияние на качество и долговечность шва. Попадая в сварочную ванну кислород способствует повышенному окислению и становится причиной трещин. Чтобы избавиться от этой проблемы существует множество способов: начиная от специальной обработки металла, заканчивая применением особых комплектующих, например, флюсов.
Один из наиболее популярных методов качественного соединения металлов — автоматическая сварка под слоем флюса. С ее помощью можно сварить такие непростые металлы, как медь, алюминий и нержавеющую сталь. Автоматическая сварка ускоряет и упрощает работу, а флюс выполняет защитную функцию. В этой статье мы кратко расскажем, что такое автоматическая дуговая сварка под флюсом и какова техника автоматической сварки под флюсом.
Общая информация
Автоматическая дуговая сварка под слоем флюса — это технология, суть которой ничем не отличается от классической дуговой сварки. Металл плавится из-за высокой температуры, которая формируется благодаря электрической дуге. Ниже изображена схема автоматической дуговой сварки под флюсом.
Отличие автоматической сварки от любой другой заключается лишь в том, что большинство процессов выполняется не вручную, а с помощью специальных станков. Например, подача проволоки и движение дуги. Ну а в нашем конкретном случае все эти операции производятся под слоем флюса, нанесенного на поверхность металла.
Область применения
Автоматическая наплавка под флюсом применяется во многих сферах. С ее помощью можно организовать быстрое крупносерийное производство, в том числе конвейерное. По этой причине данная технология незаменима при сборке кораблей, производстве крупногабаритных труб и емкостей для нефтеперерабатывающей отрасли. Автоматическая сварка обеспечивает высокое качество швов, поэтому завоевала свое уважение в таких ответственных отраслях.
Роль флюса
С автоматической сваркой все ясно. А вот что насчет флюса? Что это такое?
Флюс — это специальное вещество (может выпускаться в виде порошка, гранул, паст и жидкостей), обладающее положительными свойствами. Флюсы толстым слоем подаются прямо в сварочную зону, защищая ее от негативного влияния кислорода. Также флюс защищает сам металл, способствует устойчивому горению дуги, уменьшает вероятность разбрызгивания металла и даже изменяет химический состав шва при необходимости.
Виды применяемых флюсов
Перед тем, как провести сварку под флюсом, неплохо было бы узнать, какие вообще бывать разновидности. Прежде всего, всю флюсы делятся по назначению. Они могут быть для сварки углеродистых и легированных сталей, для высоколегированных сталей и для цветных металлов. Это первое, на что стоит обратить внимание перед покупкой флюса.
Также флюсы могут быть плавлеными или керамическими. Их отличие в составе. В большинстве случаев используется именно плавленый флюс, поскольку он относительно универсальный и стоит недорого. С его помощью можно эффективно защитить сварочную ванну от кислорода. Но не ждите от плавленого флюса каких-то особых качеств. Если вам необходимы действительно отличные свойства шва, то выберите керамический флюс. Он обеспечивает отличное качество.
Также флюсы могут быть химически активными и химически пассивными. Активный флюс содержит в составе кислоты, способные не только защитить металл при сварке, но и привести к коррозии. Так что тщательно удаляйте флюс после работы. Пассивные флюсы в автоматической сварке не применяются, поскольку не обладают достаточными для этого свойствами. Зачастую вы встретите пассивный вещества при пайке в виде воска или канифоли.
Кстати, о производителях. Это давний спор всех начинающих и опытных сварщиков. Кто-то считает, что отечественные компании производят недорогой и эффективный флюс, а кто-то всеми руками за импортные комплектующие. Мы не будем однозначно говорить, что лучше, скажем лишь то, что на практике и отечественные, и импортные флюсы показывают себя хорошо, если соблюдена технология сварки.
Достоинства и недостатки
У автоматической сварки с применением флюса есть много плюсов. Ее главное достоинство — возможность полной автоматизации процесса сварки. От сварщика не нужно даже уметь варить, достаточно знать, как настроить оборудование. Также такой метод сварки гарантирует отличное качество сварочных соединений, поскольку отсутствует человеческий фактор.
У технологии сварки деталей автоматической наплавкой под слоем флюса есть и недостатки. Во-первых, вы сможете варить только нижний швы. Также детали должны быть очень точно подогнаны, ведь машина формирует шов в четко заданном месте, и любая ошибка при стыковке приведет к браку. Кроме того, нужна очень тщательная подготовка металла перед сваркой.
Учтите, что у вас не получится сварить металл на весу. Деталь нужно будет зафиксировать на горизонтальной поверхности и предварительно проварить корень сварного соединения. Еще один существенный недостаток — большая стоимость как оборудования для автоматической сварки, так и комплектующих.
Теперь, когда вам все известно, пора узнать, какова технология автоматической сварки под флюсом.
Технология сварки
Прежде всего, перед сваркой необходимо подготовить металл. Для каждого металла подготовка своя, но мы дадим общие рекомендации. Нужно очистить деталь от грязи, краски и коррозии. Затем нужна тщательная зачистка поверхности с помощью металлической щетки или шлифовального круга. Только после подготовительных операций можно приступать к сварке.
Технология сварки под флюсом проста за счет того, что многие процессы выполняет не человек, а машина. Мастеру не нужна зажигать дугу, следить за ее стабильностью, выбирать скорость подачи проволоки и так далее. Все, что от вас требуется — правильно настроить режимы сварки под флюсом. По сути, задать машине программу действий. Ниже таблица с перечислением режимов автоматической сварки под флюсом.
Это режимы автоматической сварки под флюсом для стыковых соединений. Естественно, существуют и другие типы соединений, поэтому для них нужно произвести расчет режимов сварки. Здесь мы не будем касаться этой темы, поскольку она очень обширна (сколько типов соединений, столько и формул), поэтому изучите эту информацию самостоятельно. В интернете много способов расчета.
При работе также используется специальная присадочная проволока для сварки под флюсом. Ее подача тоже автоматизирована, нужно лишь загрузить бобину в подающий механизм. Рекомендуем приобретать проволоку, изготовленную из того же металла, что и деталь.
Теперь немного о флюсе. Он тоже подается автоматически, только предварительно его нужно насыпать в специальный резервуар. Толщина слоя флюса зависит от толщины свариваемого металла. Чем металл толще, тем больше нужно флюса.
У вас может возникнуть закономерный вопрос: а плавится ли флюс? И влияет ли он на структуру шва? Да, конечно флюс плавится под действием температуры. Но при этом он никак не нарушает структура шва, а лишь улучшает ее. Но при этом застывший флюс превращается в шлак, который после сварки нужно удалить. Остатки неиспользованного флюса можно использовать повторно.
Подобная технология применения флюса при автоматической сварке позволяет существенно увеличить скорость работ, при этом не потеряв в качестве.
Вместо заключения
Теперь вам известна автоматическая сварка с флюсом и что это такое. Конечно, помимо автоматической сварки есть еще ручная сварка под флюсом, полуавтоматическая сварка под флюсом и механизированная сварка под флюсом. Но в рамках одной статьи не раскроешь всех нюансов этих видов сварки, поэтому мы рассказываем вам о них постепенно. Статьи на эти, и многие другие темы вы сможете найти на нашем сайте. Делитесь в комментариях своим мнением и опытом. Мастера могут рассказать свои секреты применения флюса при автоматической сварке и поделиться знаниями. Желаем удачи!
Автоматическая сварка под флюсом. Её преимущества и недостатки
Автоматическая сварка под флюсом является разновидностью дуговой сварки, при которой электрическая дуга горит под слоём сварочного флюса, который препятствует проникновению атмосферного воздуха в зону сварки. На данной странице мы рассмотрим сущность автоматической сварки под флюсом.
Флюс не только защищает зону сварки от воздействия окружающей среды, он также способствует стабилизации электрической дуги, способствует раскислению металла, обеспечивает легирование свариваемого металла нужными химическими элементами, улучшая, таким образом, свариваемость металла и и обеспечивая высокие механические свойства сварного шва.
Схема процесса автоматической сварки под флюсом
На схеме показана сущность процесса автоматической сварки под флюсом. Процесс сварки рекомендуется выполнять на специальной подкладке поз.1. Подача сварочной проволоки в зону сварки происходит автоматически. Электрическая дуга возбуждается автоматически между концом электрода поз.4 и свариваемым металлом поз.2 и находится она под слоем сварочного флюса, поз.6. Подача флюса производится при помощи бункера поз.3.
В результате теплового воздействия электрической дуги, происходит расплавление сварочной проволоки и свариваемого металла. Также происходит расплавление флюса, попавшего в зону сварки. В зоне действия электрической дуги формируется некоторое пространство, ограниченное сверху плёнкой из расплавленного флюса. Это пространство занимают пары расплавленного металла, флюса и газы, образующиеся при сварке.
Давление смеси газов и паров в этом пространстве удерживают флюсовую плёнку, которая находится над зоной сварки. Электрическая дуга поз.5 всегда находится рядом со сварочной ванной, вблизи от её переднего края. Дуга, из-за её постоянного движения, горит не вертикально, а немного отклоняется в обратную сторону от направления сварки.
Электрическая дуга воздействует на расплавленный металл и оттесняет его в сторону, противоположную направлению сварки. В результате формируется сварочная ванна поз.8.
Непосредственно под электродом формируется кратер, с небольшим количеством жидкого металла. Но наибольший объём расплавленного металла располагается в зоне от кратера до поверхности сварного шва поз.12. Расплавленный флюс поз.7 имеет значительно меньшую плотность, по сравнению с жидким металлом и всплывает на поверхность сварочной ванны, охватывая её плотной оболочкой. Флюсовая оболочка предотвращает разбрызгивание расплавленного металла.
У расплавленного флюса теплопроводность достаточно низкая, из-за чего, охлаждение металла замедляется. Благодаря этому, шлаковые включения и растворённые в металле газы, поз.9, успевают подняться на поверхность и выйти из него, пока металл находится в жидком состоянии.
Не расплавленный флюс, оставшийся “незадействованным” в процессе сварки, откачивают пневматическим устройством поз.10 и затем используют при дальнейшей сварке. Расплавленный в процессе сварки металла флюс, при кристаллизации образует плотную корку на поверхности сварного шва. После окончания сварки и охлаждения сварного соединения, шлаковую оболочку, из затвердевшего флюса, удаляют с поверхности сварного шва поз.12.
Схема работы установки для автоматической сварки
На рисунке справа схематично показаны основные узлы установки для автоматической сварки и показана последовательность их работы.
Поз.5 и поз.4 – это ведущий и нажимной ролик, соответственно. Они необходимы для подачи электродной проволоки поз.3 в зону сварки. Из бункера поз.1 в зону сварки подаётся гранулированный флюс в зону сварки и покрывает непроницаемым слоем свариваемые кромки поз.7.
Через мундштук поз.6 происходит подача сварочного тока к электроду. Мундштук располагается на расстоянии 40-60мм от конца электродной проволоки и позволяет применять сварочные токи большой величины. Между свариваемым изделием поз.11 и сварочной проволокой горит электрическая дуга и расплавляет металл, образуя сварочную ванну. Ванну сверху закрывает расплавленный шлак поз.9 и нерасплавленный флюс поз.8.
По мере перемещения зоны сварки вдоль кромок, флюс, оставшийся нерасплавленным, отсасывается вытяжным шлангом поз.2 назад в бункер. Пары и газы, выделяющиеся в процессе сварки, создают в зоне сварки газовый пузырь, который закрыт слоем флюса и шлака.
При температурном расширении газового пузыря его давление оттесняет расплавленный металл в зону, противоположную от зоны сварки. Т.к. горение электрической дуги происходит внутри газового пузыря, закрытого шлаком и флюсом, угар и разбрызгивание металла исключаются.
По мере перемещения электрической дуги вдоль сварных кромок, жидкий металл остывает и формируется сварной шов. Как уже было сказано выше, слой шлака имеет более низкую температуру плавления, чем свариваемый металл и затвердевает он значительно позже, замедляя остывание расплавленного металла. Замедленное охлаждение сварного шва способствует выходу газов из ещё жидкого металла и шов получается более однородным по химическому составу.
Преимущества и недостатки автоматической сварки под слоем флюса
К преимуществам данного способа сварки можно отнести:
1. Высокая производительность, превышающая производительность ручной дуговой сварки в 5-10раз. Достигается она за счёт использования сварочного тока значительной силы, и, как следствие этого, за счёт глубокого проплавления свариваемого металла. А также за счёт того, что отсутствуют угар и разбрызгивание металла, а, следовательно, исключаются потери металла. Кроме этого, высокая производительность обеспечивается вследствие автоматизации процесса сварки металла.
2. Применение флюса повышает качество сварки за счёт того, что образует защитную плёнку вокруг зоны сварки и препятствует проникновению в неё окружающего воздуха. Кроме того, флюс, на поверхности расплавленного металла обладает низкой теплопроводностью и препятствует быстрому остыванию жидкого металла. Вследствие этого газы и неметаллические включения успевают всплыть па поверхность сварочной ванны и выйти из неё до того, как металл кристаллизуется. Об этом мы говорили выше по тексту.
3. Процесс автоматической сварки под флюсом полностью механизирован, что позволяет уменьшить до минимума трудоёмкий и дорогостоящий ручной труд и снизить квалификацию сварщика. А технология ручной дуговой сварки подразумевает ручной труд и для выполнения этих работ требуется сварщик более высокой квалификации.
4. Электрическая дуга при автоматизированной сварке получается более стабильной, т.к. находится под защитным слоем сварочного флюса.
5. При автоматической сварке потери электродного металла не превышают 2-5%, так как угар металла и его разбрызгивание практически отсутствуют. Для сравнения, при ручной сварке потери металла из-за его угара и разбрызгивания достигают 20%, а в некоторых случаях 30%.
6. При автоматической сварке коэффициент использования теплоты от электрической дуги более высокий, чем при ручной сварке. Это позволяет существенно экономить электроэнергию. Экономия может достигать 40%.
7. Улучшенные условия работы сварщика. Зона сварки закрыта непроницаемыми слоями флюса и шлака, которые исключают проникновение окружающего воздуха в зону сварки. Но также эти слои препятствуют выделению вредных газов и пыли из сварочной зоны в воздух. Поэтому, для удаления газов достаточно наличия естественной вытяжной вентиляции на рабочем месте сварщика.
8. Из-за того, что дуга находится под флюсом, она не видна оператору, следовательно, исключено её воздействие на глаза, поэтому, не требуется специальной маски или очков для защиты глаз.
К недостаткам такого вида сварки можно отнести возможность сварки швов только в нижнем положении, или при небольших наклонах сварных кромок, на угол не более 15°. Также затруднено применение автоматической сварки в монтажных условиях. Эти недостатки обусловлены недостаточной маневренностью сварочных автоматов из-за их конструктивных особенностей. Но со временем, по мере развития сварочной техники и технологии подобный недостаток будет устранён.
Источники:
http://elsvarkin.ru/texnologiya/pod-flyusom-2/
http://svarkaed.ru/svarka/vidy-i-sposoby-svarki/tehnologiya-avtomaticheskoj-svarki-pod-flyusom.html
http://taina-svarki.ru/sposoby-svarki/avtomaticheskaya-svarka/avtomaticheskaya-svarka-pod-flyusom.php