2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Алюминиевый радиатор отопления в разрезе оксидная пленка

Самые популярные батареи — какие они? Устройство алюминиевых радиаторов отопления

Преимущество алюминиевых батарей перед аналогами заключается в высокой теплоотдаче, небольшой стоимости, разнообразии форм.

Подобные типы батарей отопления отличаются особой конструкцией и внутренним устройством.

Как устроены алюминиевые радиаторы отопления

По конструкции различают цельный и секционный вариант. Первый изготавливается из профильных пластин, сделанных по технологии экструзии, что повышает пластичность.

Полученные части сваривают, создавая полноценную батарею. Это делает её прочной. Предварительно внутреннюю сторону покрывают полимером, снижающим шанс образования течи.

Секции делают по очереди, затем соединяя. Чистый металл используют редко: алюминий сплавляют с кремнием, цинком, иногда титаном. Эти вещества повышают прочность, снижают риск разрыва и образования коррозии. В качестве герметика применяют силикаты. Как и цельные, изнутри устройство покрывают специальной жидкостью для защиты от высокого давления.

По способу изготовления выделяют алюминиевые радиаторы трёх типов: литейные, экструзионные и анодированные. Среди технических характеристик важны:

  1. Рабочее давление должно располагаться в промежутке 10—15 атм. В многоквартирных домах показатели гораздо выше, поэтому использовать в них алюминиевые устройства не рекомендуется. Испытательное вдвое больше обычного, но лучше иметь запас.
  2. Мощность батареи составляет 82—212 ватт, в зависимости от габаритов.
  3. Максимальный нагрев теплоносителя не должен превышать 120 °C.
  4. Масса секции — 1—1,5 кг. Объём — 0,25—0,46 литра.
  5. Межосевое расстояние зависит от высоты и находится в диапазоне от 20 до 80 см, иногда превышая его.

Параметры каждого алюминиевого устройства могут отличаться, но обязательно указаны в техническом паспорте изделия.

Достоинства алюминиевых радиаторов:

  • Компактность и небольшая масса облегчают установку, не требуют мощных креплений.
  • Высокая скорость нагрева, хорошая теплопередача.
  • Длительный срок службы, хотя меньший, чем у чугуна.
  • Небольшая длина секций позволит подобрать подходящее под определённое помещение. И также благодаря разделению устройства на части, можно сделать систему без избытка обогрева.
  • Алюминий прост в обработке, что разрешает создание дизайнерских приборов.
  • Хорошую защиту от внешних повреждений. Радиатор очень сложно повредить или разбить физическим ударом, но довольно легко согнуть.
  • Относительная дешевизна металла.

Среди недостатков выделяют:

  • Слабую защищённость от коррозии, что портит устройство в течение эксплуатации. Алюминий — активное вещество, легко взаимодействующее с кислородом. Из-за окисления разрушится защитный слой, поскольку в течение реакции выделяется газообразный водород.
  • Необходимость нанесения полимерного покрытия для предотвращения разрыва, защиты от выделений.

Конструкция алюминиевой батареи в разрезе

Если посмотреть на устройство сверху или снизу, станут видны коллекторы. Они создают горизонтальные каналы для транспортировки жидкости. Крайний нижний собирает грязь, накипь, прочие твёрдые частицы, что помогает избежать засорения всего устройства. Для удаления предусмотрен специальный клапан.

Внимание! Основной недостаток — частые протечки в местах стыка.

Вид алюминиевого радиатора в разрезе представлен на картинке.

Фото 1. Внутренняя конструкция алюминиевого радиатора отопления. Корпус выполнен из алюминия, а внутри проходит медная трубка.

Комплектующие для монтажа устройства

От деталей, поступающих в продажу вместе с радиатором, зависит качество его эксплуатации. Вместе с устройством предлагают два важных компонента: клапан для спуска воздуха и крепежи. Для многоквартирных домов их дополняют удлинителем протока.

Кран Маевского

Служит для отвода воздуха из системы. Помогает избавиться от газовых пробок, перегретого пара. Таким образом, позволяет снизить давление, повысившееся из-за долгой работы котла. Обязателен к установкам в обвязках закрытого типа дополненных циркуляционным насосом.

Справка. Желательно наличие клапана для спуска воды. Он будет служить той же цели, что кран Маевского, затрагивая жидкостную часть.

Кронштейны для крепления

Служат креплениями для радиатора. Обязательно присутствуют в комплекте с алюминиевым устройством.

Фото 2. Кронштейны для крепления алюминиевых радиаторов. Изделия уже вмонтированы в стену.

Их делят на три вида:

  • Уголки для дерева.
  • Штыри для стен из прочих материалов.
  • Анкеры для любых поверхностей.

Для всех соединений с резьбой необходимы заглушки. Минимальный диаметр должен составлять один дюйм (25,4 мм). Для ниппелей они также нужны, но без ограничений по размеру.

Иногда алюминиевые радиаторы оборачивают прокладками с эффектом отражения тепла. Их размещают вдоль стены, уменьшая потери энергии в атмосферу. Материалом для изготовления служит фольга или порилекс. Вещество часто дополняют ещё одним слоем утеплителя, обычно пенопластом.

Удлинитель протока

Приспособление используют для повышения теплопроводности радиатора. Для этого последний должен содержать не менее 10 секций.

Обязательно боковое подключение к магистрали, поскольку алюминиевые устройства переправляют жидкость по диагонали. А также важно наличие запорных арматур на обеих трубах.

Если условия соблюдены, для монтажа необязательно изменять текущую схему. В противном случае рекомендуется пригласить сантехника.

Полезное видео

Посмотрите видео, в котором рассказывается, на что обратить внимание при выборе алюминиевой батареи.

Установка — это ответственное дело!

Качество монтажа зачастую зависит от комплектующих, которыми снабжён радиатор. Компоненты оказывают большое влияние на систему, потому важно правильно установить их. Для этого рекомендуется пригласить специалиста.

Коррозия в алюминиевых радиаторах

В принципе, процессы коррозии внутренней поверхности радиатора в той или иной степени характерны для всех типов радиаторов отопления, но для алюминиевых радиаторов коррозия имеет особое значение — во-первых, именно в них она протекает наиболее активно, а во-вторых, именно коррозия металла является важнейшим фактором, препятствующим нормальному функционированию алюминиевых радиаторов в российских центральных сетях теплоснабжения, и поэтому мы решили остановиться на этом поподробнее.

Защитная оксидная пленка — надолго ли?

Очень часто в рекламных буклетах и на сайтах производителей алюминиевых радиаторов (особенно это касается наших российских заводов), можно встретить такое утверждение: «В процессе производства наших алюминиевых радиаторов на их внутренней поверхности образуется прочная защитная пленка из оксида алюминия, которая надежно защищает радиатор от внутренней коррозии».

Читать еще:  Альпийская плетенка забор своими руками

Во-первых, производители российских алюминиевых радиаторов, 100 % которых изготавливаются методом экструзии (и не потому что он лучше, а потому что организация такого производства требует несоизмеримо меньше затрат, чем организация литейного производства алюминиевых радиаторов — подробнее о сравнении метода экструзии и литья радиаторов из алюминия читайте в статье «Устройство алюминиевых радиаторов отопления») преподносят образование этой защитной пленки как одно из преимуществ используемого ими экструзионного метода производства алюминиевых радиаторов.

На самом деле эта оксидная пленка образуется абсолютно на любой алюминиевой поверхности — независимо от того, каким методом (литья или прессования) была изготовлена алюминиевая секция.

Заглянув в любой школьный учебник по химии, мы найдем информацию о том, что при контакте с воздухом алюминий образует тонкую беспористую оксидную пленку (химическая формула Al2O3), которая защищает этот металл от дальнейшего окисления, чем обуславливает его высокую антикоррозийную стойкость.

И если бы по трубам центрального отопления текла бы кристально чистая вода с нейтральным pH и без каких-либо механических примесей, то так бы и было — образовавшаяся оксидная пленка долгое время защищала бы алюминиевый сплав от дальнейшего окисления и действительно бы препятствовала его разрушению.

Но ни для кого не секрет, что качество воды в наших российских теплосетях является КРАЙНЕ НИЗКИМ, и вода содержит просто ОГРОМНОЕ КОЛИЧЕСТВО этих самых загрязняющих частиц (песок, мелкие камни, частицы ржавчины и свинцовой окалины и еще очень много всего интересного). Эти самые механических частицы, проходя через алюминиевый радиатор на довольно высокой скорости, вызывают абразивный износ внутренней поверхности, и первое, что они делают — механически разрушают эту самую пресловутую защитную пленку, а уж потом принимаются и за саму алюминиевую стенку (алюминий, как известно, является очень мягким металлом, который очень легко поцарапать).

Кроме того, к процессам механического разрушения этой самой защитной оксидной пленки добавляются значительно более активные процессы ее химического разрушения. В этом же самом учебнике по химии можно прочитать, что оксид алюминия обладает высокой «амфотерностью» — то есть способностью вступать в химические реакции как с щелочами, так и с кислотами с образованием водорасторимых солей, которые не остаются на металле, а попадают в теплоноситель.

А так как горячая вода в центральной системе тепловых сетей, кроме высокого содержания механических частиц, имеет еще и очень нестабильный кислотно-щелочной баланс, весьма далекий от нейтральных показателей, то эти химические реакции протекают очень даже активно- разрушая эту самую защитную оксидную пленку и обнажая алюминий.

Удивительно, но факт — если бы трубам отопления вместо воды бы текла серная или азотная кислота, то эта защитная пленка оставалась бы в целости и сохранности, так как оксид алюминия не вступает в реакцию с этими двумя столь ядовитыми кислотами!

Но вернемся к нашим алюминиевым радиатором не сернокислотного, а водяного отопления. :))

В условиях столь агрессивной среды даже для того, чтобы разрушить стенку радиатора из алюминиевого сплава может оказаться достаточно всего каких-нибудь 4-5 лет (!) — учитывая тот факт, что стенки из алюминия производители стараются сделать как можно тоньше (ведь это одно из основных преимуществ этого вида радиаторов — тонкость и изящество конструкции), а к процессам довольно медленной механического истирания добавляются куда более активные процессы химической коррозии.

Что уж говорить о тонкой оксидной пленке — от нее не остается и следа уже через несколько месяцев! Поэтому читать утверждения некоторых то ли не слишком грамотных, то ли не слишком честных производителей о том, что «. благодаря образующейся защитной оксидной пленке наши алюминиевые радиаторы приобретают исключительную устойчивость к коррозии» — просто смешно.

А теперь — гуляем!

Или, как в известном анекдоте про поручика Ржевского, — «. а в 13 номер — шампанского»!

Что же происходит после разрушения защищающей оксидной пленки?

Обнажившийся алюминий после контакта с водой преобразуется в гидрооксид алюминия (кстати, тоже очень активное соединение, которое с удовольствием впоследствии вступает в химические реакции с кислотами и щелочами) с выделением водорода. В случае же, если pH воды далек от нейтрального (как в наших городских сетях), то и сам алюминий прекрасно вступает в реакции с содержащимися в воде кислотами и щелочными соединениями.

В общем, если заглянуть внутрь алюминиевого радиатора, установленного в нашей городской квартире в системе центрального теплоснабжения, то обстановка там будет очень напоминать новогоднюю корпоративную вечеринку — все со всеми очень радостно и взбудораженно общаются, и активно вступают в самые разнообразные контакты :)))

При этом, кстати, хозяин этого алюминиевого радиатора сидит довольный и умиротворенный в своем уютном кресле, уверенный в полной надежности своего радиатора — ведь при покупке он не поскупился, и купил самый надежный и современный алюминиевый радиатор (как сказали ему в магазине — этот алюминиевый радиатор выдерживает сверхдавление в 30 или даже в 50 атмосфер, и гарантия на него составляет целых 10 лет).

Но и это еще не все. Результатом всех этих бурных и разнообразных химических реакций является не только образование различных солей, которые попадают в теплоноситель (ну это в общем-то безопасно, разве что еще более усиливается нестабильность кислотно-щелочного баланса теплоносителя), но и выделение в результате газа водорода, которому некуда деваться, кроме как накапливаться в алюминиевом радиаторе.

Вот это уже действительно серьезно — так как в условиях агрессивной среды теплоносителя вышеперечисленные химические реакции могут происходить очень активно, и накапливающийся в алюминиевом радиаторе водород может попросту РАЗОРВАТЬ РАДИАТОР.

Читать еще:  Шкаф купе до потолка своими руками

Именно поэтому в инструкции к любому алюминиевому радиатору можно прочитать, что в комплекте с ним обязательно необходима установка воздухоспускающего клапана или крана Маевского, и нужно его не только установить, но и регулярно им пользоваться для выпуска скапливающегося в радиаторе водорода.

Поэтому, если, не дай Бог, алюминиевый радиатор разорвет, то в случае обращения по гарантии ему ответят, что виной всему является нарушение правил эксплуатации радиатора по Вашей вине (вовремя не спускали воздух из радиатора), или из-за нарушений требований по кислотности теплоносителя, возникшие из-за городских коммунальных организаций — а значит, и с претензиями обращайтесь к ним.

И ведь действительно — алюминиевые радиаторы рассчитаны на эксплуатацию при pH воды в пределах 7-8, а единственный документ, регламентирующий этот показатель для воды, подаваемой в центральные российские теплосети — «Правила технической эксплуатации электрических станций и сетей РФ», устанавливает его в пределах 8,3–9,5. Так что отказ в гарантии и в возмещении ущерба, возникшим в результате разрыва алюминиевого радиатора из-за скопившегося в нем водорода, будет вполне законным и обоснованным.

Некоторые могут подумать, что если заменить воду на незамерзающий антифриз, то все будет хорошо. На само деле, если в качестве теплоносителя использовать незамерзающую жидкость, то ситуация будет схожая. Самый распространенный антифриз — это водный раствор этиленгликоля, который также вступает в реакцию с алюминием, при которой происходит замещение гидрооксильного водорода на металл, и при этом выделяется свободный водород.

Так что, дорогие дамы и господа, ЕДИНСТВЕННЫЙ ВАРИАНТ ПОЛНОСТЬЮ ЗАЩИТИТЬ АЛЮМИНИЕВЫЙ РАДИАТОР ОТ КОРРОЗИИ — ЭТО ПОЛНОСТЬЮ ИСКЛЮЧИТЬ ЕГО КОНТАКТ С ТЕПЛОНОСИТЕЛЕМ, что и сделано в НЕКОТОРЫХ современных биметаллических радиаторах.

Мы особо выделили слово в НЕКОТОРЫХ — потому что далеко не во всех биметаллических радиаторах полностью исключен контакт алюминия с горячей водой, во многих моделях биметаллических радиаторов на сталь заменены не все, а только часть внутренних поверхностей, что, конечно, несколько снижает активность коррозийных процессов, но не исключает их полностью.

И даже в случае, когда все внутренние детали, соприкасающиеся с водой, заменены на сталь, говорить о полном отсутствии процессов коррозии (ссылка на статью коррозия в радиаторах) тоже неправильно — ведь сталь тоже подвержена коррозии, просто эти процессы протекают в стальных теплопроводящих трубках намного менее выражено и медленнее.

На сегодняшний день, насколько нам известно, существуют только одни радиаторы, абсолютно и полностью, на 100%, защищенные от внутренней коррозии: биметаллические радиаторы Royal Termo BiLiner — в этих биметалических радиаторах ВСЕ внутренние поверхности, контактирующие с водой, заменены на высококачественную НЕРЖАВЕЩУЮ СТАЛЬ.

Алюминиевые радиаторы. Мифы и реальность

Что даёт вес, всем понятно, это меньше нагрузка на крепления, на стену, меньше вес при транспортировке и подъёме на этаж. Теплопроводность, это способность материала проводить через себя тепло, чем она выше, тем быстрее металл радиатора отдаёт энергию теплоносителя и тем быстрее охлаждается, когда нагрев не нужен.

Алюминий — идеальный материал для радиаторов. Лёгкий и красивый. Круче него только медь, которая по теплопроводности уделывает алюминий, но тяжелее железа и более дорогая.

Но так ли идеален алюминий? Рассмотрим его свойства и разные нюансы.

Алюминий при реакции с воздухом (кислородом), образует на своей плоскости тонкую плёнку из оксида алюминия, которая не реагирует далее с водой и кислотами, но достаточно легко растворяется щелочами.

4Al+3O2 = 2Al2O3 Или с водой, образуя ту же самую оксидную плёнку и свободный водород. 2Al+3H2O = Al2O3 +3H2

Всем известна эта проблема с выделяемым водородом на алюминиевых радиаторах. Но она не так долга, всё закончится когда на поверхности алюминия образуется эта защитная плёнка оксида. Когда в описании к алюминиевым радиаторам вы читаете, что на внутренней поверхности есть защитное покрытие, значит, скорее всего, производитель уже дал поверхности покрыться оксидом, поместив секции радиатора в воду или же во влажный воздух. Если плёнки оксида ещё нет, она появится при контакте с теплоносителем (если это вода), при этом какое-то время выделяемый водород будет удаляться автоматическими воздухоотводчиками, снижая давление в системе, при этом некоторые паникуют, думая, что у них есть утечка.

Иногда при разных нюансах, оксидная плёнка может повреждаться мусором, песком в системе отопления, после чего идёт новая реакция алюминия с водой и нарастания плёнки оксида. Это весьма скоротечный процесс, потому как повреждения плёнки обычно минимальны.

На этом все злоключения пользователя с алюминиевыми радиаторами заканчиваются, если у него автономная система и вода в качестве теплоносителя. Если какая-то «незамерзайка», то тут могут быть нюансы. Стандартные «незамерзайки» на основе пропиленгликоля (которые рекомендованы для систем отопления в силу их меньшей агрессивности, чем этиленгликолевые), никак не реагируют с алюминием. Но самодельные «бадяжные» смеси могут нарушать целостность оксидной плёнкт на алюминии.

Если вдруг так случилось, что пользователь рискнул поставить алюминиевый радиатор на центральное отопление, то это равносильно бомбе замедленного действия. Что же происходит при этом?

Не секрет, что в системах центрального отопления, в теплоноситель добавляется щёлочь для промывки всех её частей (особенно металлических), препятствованию коррозии. При этом постоянно поддерживается щелочной pH.

При этом идёт реакция защитной плёнки из оксида алюминия и растворённой щёлочи в теплоносителе.

Al2O3+2NaOH + 7H2O = 2Na[Al(OH)4(H2O)2] который позже распадается на 2NaAlO2+8H2O то есть на алюминат натрия и воду. Но и это соединение не стабильно и снова реагирует с водой, становясь тетрагидроксоалюминатом натрия Na[Al(OH)4]. Но и эта комплексная соль нестабильна и распадается на другие комплексные соли, но это не главное, главное, что плёнка оксида алюминия перстаёт защищать алюминий основания. и он начинает реагировать со щёлочью теплоносителя

Читать еще:  Как сделать мансарду в своем доме

2Al+2NaOH+6H2O = 2Na[Al(OH)4]+3H2 Снова с выделением водорода и образованием тетрагидроксоалюмината натрия. Так щёлочь теплоносителя съедает тело радиатора. Продукты же реакции уносятся теплоносителем и доставляется новая порция щелочного теплоносителя. Алюминий просто вымывается щёлочью.

Со временем в каких-то утончившихся местах радиатор может лопнуть от того, что слой алюминия не выдерживает давления в системе отопления (либо при гидроударе).

Но тут ещё накладываются нюансы изготовления алюминевых радиаторов. Рассмотрим и их.

Если радиаторы сделаны путём литья, когда алюминий расплавлен, а потом влит в формы и он создал кристаллическую структуру, то его структура примерно такова

Где серые шарики — атомы алюминия. Пока щёлочь теплоносителя не съест первый ряд атомов, она не приступит к к следующему ряду (так как атомы идентичны, раствор щёлочи равномерен в концентрации и время взаимодействия одинаково). Так будет, если радиатор получен путём литья.

Но ведь есть более продвинутая и дешёвая технология — порошковое прессование. В ней разделяют 4 главных процесса:

1. Приготовление порошка.
2. Смешивание.
3. Прессование.
4. Спекание.

Итак, если у вас нормальный производитель, он выдержит всю технологию и вы получите качественное, но дорогое изделие. А так как сейчас идёт борьба за удешевление (а значит борьба за покупателя или за прибыль), то некоторые нерадивые производители из стран отдалённых (ну вы понимаете), могут вносить в технологию следующие погрешности.

1. Приготовление порошка может идти с нарушением его фракции, то есть укрупнения частиц. Так как именно порошок в порошковой металлургии самый застратный момент, его стараются удешевить. При этом может появляться порошок с гранулами вот такого размера

2. Смешивание. Чтобы ещё более удешевить порошковую смесь алюминия, её могут смешать с другими, более дешёвыми порошками, например силумином, цинком, железом, чугуном, а при пущей наглости пластиком или даже мусором. Можно также нетщательно еремешать порошки между собой.

3. Прессование. При прессовании происходит так, что гранулы порошка прижимаются друг к другу некоторыми частями с такой силой, что происходит «зацеп» кристаллической решётки на атомарном уровне. Так между гранулами образуется пятно котнтакта, где материалы как бы склеиваются между собой. Обычно необходимо при этом обрабатывать пресс-формы ультразвуком для большей усадки и большей плотности проникновения между гранулами, но это ведь лишние траты для того производителя, который решил сэкономить.

4. Спекание. Это процесс, когда полученную деталь нагревают ниже температуры плавления материала, но при этом пятно контакта между гранулами увеличивается и деталь становится гораздо крепче. Тут тоже можно сэкономить, уменьшив время спекания или температуру.

И что тогда в этом случае мы получаем в разрезе. Возьмём тот же самый рисунок как с литьём, но теперь наши атомы алюминия станут гарнулами порошка (естественно гранулы несравнимо больше чем атомы)

Теплоноситель получит гораздо большую площадь реакции, при этом увеличится её скорость, то есть съедать алюминий щелочной теплоноситель будет быстрее. Заодно так выкусывая из тела радиатора целые гранулы неалюминия, он будет гораздо быстрее утоньшать стенку радиатора, что приведёт к более быстрой поломке.

Теперь рассмотрим распространённый миф, что если алюминиевый радиатор с щелочным теплоносителем закрыть герметично в радиаторе (перекрыть краны подачи и обратки), со временем от выделенного из-за реакции алюминия со щёлочью водорода, радиатор может взрваться-лопнуть.

Во-первых, при такой реакции всегда есть растворённый водород, который не существует в виде свободного газа. Он не будет существовать до тех пор, пока давление в пузыре водорода, который выделился в свободном виде, будет выше давления в теплоносителе. Чтобы было понятнее, вспомните бутылку газированной воды. Пока она закрыта, есть небольшая полость у горлышка бутылки, где есть газ, но из воды он не выделяется, так как давление воды равно давленю в этой полости с газом. Но стоит только открыть бутылку и снизить давление, растворённый в воде газ быстро себя проявляет. Но стоит снова закрыть бутылку, через время пузырьки газа вновь перестают выделяться, пока давление не выровняется.

Так же и в радиаторе, газ сначала будет растворяться в теплоносителе, потом освободит себе какую-то полость в верхней части радиатора, откуда выместит теплоноситель, за счёт чего повысится несколько давление в теплоносителе. Но газ очень сжимаем, а жидкость нет, поэтому накачать эту газовую полость водородом до такой степени, чтобы она вытеснила много воды и создала критическое давление, это нужно очень много водорода.

А почему же мы не сможем получить так много водорода? Потому как количество щёлочи в нашем запертом радиаторе неизменно и с каждой прореагировавшей молекулой алюминия, концетрация щёлочи становится всё меньше, ведь она разлагается на описанные выше комплексные соли.

Почему же иногда закрытые радиаторы таки взрываются? Именно по описанной выше причине — некачественное порошковое прессование, которое приводит к тому, что катастрофически утоньшается стенка в каком-то месте из-за примесей и отхода от технологии, и радиатор не выдерживает внутреннего давления, а не из-за критического давления ввиду выделения водорода.

Но при всех причинах, которые обслуживающая отопление контора может рассказать пользователю по поводу взорвавшегося радиатора, вина лежит только на пользователе. Ибо нельзя ставить алюминиевые радиаторы для эксплуатации с щелочным теплоносителем. Для этого давно уже придуман биметалл.

Источники:

http://ogon.guru/otoplenie/radiatori/vidi/alyuminievie/ustroystvo.html
http://radiatory-krasnoyarsk.ru/korrozija-v-aluminievyh-radiatorah
http://forum.vashdom.ru/articles/aljuminievye-radiatory-mify-i-realnost.2/

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector